A global survey of haplotype frequencies and linkage disequilibrium at the DRD2 locus
A four-site haplotype system at the dopamine D2 receptor locus (DRD2) has been studied in a global sample of 28 distinct populations. The haplotype system spans about 25 kb, encompassing the coding region of the gene. The four individual markers include three TaqI restriction site polymorphisms (RSPs) – TaqI “A”, “B”, and “D” sites – and one dinucleotide short tandem repeat polymorphism (STRP). All four of the marker systems are polymorphic in all regions of the world and in most individual populations. The haplotype system shows the highest average heterozygosity in Africa, a slightly lower average heterozygosity in Europe, and the lowest average heterozygosities in East Asia and the Americas. Across all populations, 20 of the 48 possible haplotypes reached a frequency of at least 5% in at least one population sample. However, no single population had more than six haplotypes reaching that frequency. In general, African populations had more haplotypes present in each population and more haplotypes occurring at a frequency of at least 5% in that population. Permutation tests for significance of overall disequilibrium (all sites considered simultaneously) were highly significant (P<0.001) in all 28 populations. Except for three African samples, the pairwise disequilibrium between the outermost RSP markers, TaqI “B” and “A”, was highly significant with D’ values greater than 0.8; in two of those exceptions the RSP marker was not polymorphic. Except for those same two African populations, the 16-repeat allele at the STRP also showed highly significant disequilibrium with the TaqI “B” site in all populations, with D’ values usually greater than 0.7. Only four haplotypes account for more than 70% of all chromosomes in virtually all non-African populations, and two of those haplotypes account for more than 70% of all chromosomes in most East Asian and Amerindian populations. A new measure of the amount of overall disequilibrium shows least disequilibrium in African populations, somewhat more in European populations, and the greatest amount in East Asian and Amerindian populations. This pattern seems best explained by random genetic drift with low levels of recombination, a low mutation rate at the STRP, and essentially no recurrent mutation at the RSP sites, all in conjunction with an “Out of Africa” model for recent human evolution.
PDF file
In our genes
PDF file
Global survey of haplotype frequencies and linkage disequilibrium at the RET locus
We have constructed haplotypes based on normal variation at six polymorphic sites–five single nucleotide polymorphisms (SNPs) and one short tandem repeat polymorphism (STRP)–at the RET locus for samples of normal individuals from 32 populations distributed across the major continental regions of the world. The haplotyped system spans 41.6 kilobases and encompasses most of the coding region of the gene. All of the markers are polymorphic in all regions of the world and in most individual populations. Expected heterozygosities for the six-site haplotypes range from 82 to 94% for all populations studied except for two Amerindian groups from the Amazon basin at 61 and 76%. Individual populations had from four to eight haplotypes with frequencies exceeding 5%. In general, African, southwest Asian and European groups have the highest numbers of total and of commonly occurring haplotypes; the lowest numbers are observed in Amerindian populations. Overall linkage disequilibrium (LD) for the five SNP sites was very significant (P < or = 0.001) for all the non-African populations, but significant at that level for only one of the seven African populations. In general, the permutation-based xi coefficient that quantifies overall LD tends to increase the farther the population is from Africa, but variability of this measure of LD is often large within geographic regions. Pairwise LD measures among the SNPs also show considerable variation among populations. Association of STRP alleles with the SNP-defined background haplotypes is generally higher outside of Africa than in Africa, but is highly variable.
PDF file
A four-site haplotype system at the dopamine D2 receptor locus (DRD2) has been studied in a global sample of 28 distinct populations. The haplotype system spans about 25 kb, encompassing the coding region of the gene. The four individual markers include three TaqI restriction site polymorphisms (RSPs) – TaqI “A”, “B”, and “D” sites – and one dinucleotide short tandem repeat polymorphism (STRP). All four of the marker systems are polymorphic in all regions of the world and in most individual populations. The haplotype system shows the highest average heterozygosity in Africa, a slightly lower average heterozygosity in Europe, and the lowest average heterozygosities in East Asia and the Americas. Across all populations, 20 of the 48 possible haplotypes reached a frequency of at least 5% in at least one population sample. However, no single population had more than six haplotypes reaching that frequency. In general, African populations had more haplotypes present in each population and more haplotypes occurring at a frequency of at least 5% in that population. Permutation tests for significance of overall disequilibrium (all sites considered simultaneously) were highly significant (P<0.001) in all 28 populations. Except for three African samples, the pairwise disequilibrium between the outermost RSP markers, TaqI “B” and “A”, was highly significant with D’ values greater than 0.8; in two of those exceptions the RSP marker was not polymorphic. Except for those same two African populations, the 16-repeat allele at the STRP also showed highly significant disequilibrium with the TaqI “B” site in all populations, with D’ values usually greater than 0.7. Only four haplotypes account for more than 70% of all chromosomes in virtually all non-African populations, and two of those haplotypes account for more than 70% of all chromosomes in most East Asian and Amerindian populations. A new measure of the amount of overall disequilibrium shows least disequilibrium in African populations, somewhat more in European populations, and the greatest amount in East Asian and Amerindian populations. This pattern seems best explained by random genetic drift with low levels of recombination, a low mutation rate at the STRP, and essentially no recurrent mutation at the RSP sites, all in conjunction with an “Out of Africa” model for recent human evolution.
PDF file
In our genes
PDF file
Global survey of haplotype frequencies and linkage disequilibrium at the RET locus
We have constructed haplotypes based on normal variation at six polymorphic sites–five single nucleotide polymorphisms (SNPs) and one short tandem repeat polymorphism (STRP)–at the RET locus for samples of normal individuals from 32 populations distributed across the major continental regions of the world. The haplotyped system spans 41.6 kilobases and encompasses most of the coding region of the gene. All of the markers are polymorphic in all regions of the world and in most individual populations. Expected heterozygosities for the six-site haplotypes range from 82 to 94% for all populations studied except for two Amerindian groups from the Amazon basin at 61 and 76%. Individual populations had from four to eight haplotypes with frequencies exceeding 5%. In general, African, southwest Asian and European groups have the highest numbers of total and of commonly occurring haplotypes; the lowest numbers are observed in Amerindian populations. Overall linkage disequilibrium (LD) for the five SNP sites was very significant (P < or = 0.001) for all the non-African populations, but significant at that level for only one of the seven African populations. In general, the permutation-based xi coefficient that quantifies overall LD tends to increase the farther the population is from Africa, but variability of this measure of LD is often large within geographic regions. Pairwise LD measures among the SNPs also show considerable variation among populations. Association of STRP alleles with the SNP-defined background haplotypes is generally higher outside of Africa than in Africa, but is highly variable.
PDF file