Genetic Chaos

Thursday, June 17, 2004

Sex-Specific Migration Patterns in Central Asian Populations, Revealed by Analysis of Y-Chromosome Short Tandem Repeats and mtDNA

Eight Y-linked short-tandem-repeat polymorphisms (DYS19, DYS388, DYS389I, DYS389II, DYS390, DYS391, DYS392, and DYS393) were analyzed in four populations of Central Asia, comprising two lowland samples—Uighurs and lowland Kirghiz—and two highland samples—namely, the Kazakhs (altitude 2,500 m above sea level) and highland Kirghiz (altitude 3,200 m above sea level). The results were compared with mtDNA sequence data on the same individuals, to study possible differences in male versus female genetic-variation patterns in these Central Asian populations. Analysis of molecular variance (AMOVA) showed a very high degree of genetic differentiation among the populations tested, in discordance with the results obtained with mtDNA sequences, which showed high homogeneity. Moreover, a dramatic reduction of the haplotype genetic diversity was observed in the villages at high altitude, especially in the highland Kirghiz, when compared with the villages at low altitude, which suggests a male founder effect in the settlement of high-altitude lands. Nonetheless, mtDNA genetic diversity in these highland populations is equivalent to that in the lowland populations. The present results suggest a very different migration pattern in males versus females, in an extended historical frame, with a higher migration rate for females.

PDF file

Unravelling migrations in the steppe: mitochondrial DNA sequences from ancient Central Asians

This study helps to clarify the debate on the Western and Eastern genetic influences in Central Asia. Thirty-six skeletal remains from Kazakhstan (Central Asia), excavated from different sites dating between the fifteenth century BC to the fifth century AD, have been analysed for the hypervariable control region (HVR-I) and haplogroup diagnostic single nucleotide polymorphisms (SNPs) of the mitochondrial DNA genome. Standard authentication criteria for ancient DNA studies, including multiple extractions, cloning of PCR products and independent replication, have been followed. The distribution of east and west Eurasian lineages through time in the region is concordant with the available archaeological information: prior to the thirteenth–seventh century BC, all Kazakh samples belong to European lineages; while later an arrival of east Eurasian sequences that coexisted with the previous west Eurasian genetic substratum can be detected. The presence of an ancient genetic substratum of European origin in West Asia may be related to the discovery of ancient mummies with European features in Xinjiang and to the existence of an extinct Indo-European language, Tocharian. This study demonstrates the usefulness of the ancient DNA in unravelling complex patterns of past human migrations so as to help decipher the origin of present-day admixed populations.

PDF file