Genetic Chaos

Monday, July 12, 2004

mtDNA Affinities of the Peoples of North-Central Mexico

mtDNA haplotypes of representatives of the cosmopolitan peoples of north-central Mexico were studied. Two hundred twenty-three samples from individuals residing in vicinities of two localities in north-central Mexico were analyzed. A combination of strategies was employed to identify the origin of each haplotype, including length variation analysis of the COII and tRNALYS intergenic region, nucleotide sequence analysis of control region hypervariable segment 1, and RFLP analysis of PCR products spanning diagnostic sites. Analysis of these data revealed that the majority of the mtDNA haplotypes were of Native American origin, belonging to one of four primary Native American haplogroups. Others were of European or African origin, and the frequency of African haplotypes was equivalent to that of haplotypes of European derivation. These results provide diagnostic, discrete character, molecular genetic evidence that, together with results of previous studies of classical genetic systems, is informative with regard to both the magnitude of African admixture and the relative maternal contribution of African, European, and Native American peoples to the genetic heritage of Mexico. Phylogenetic analysis revealed that African sequences formed a basal, paraphyletic group.

PDF file

Native American mtDNA Prehistory in the American Southwest

This study examines the mtDNA diversity of the proposed descendants of the multiethnic Hohokam and Anasazi cultural traditions, as well as Uto-Aztecan and Southern-Athapaskan groups, to investigate hypothesized migrations associated with the Southwest region. The mtDNA haplogroups of 117 Native Americans from southwestern North America were determined. The hypervariable segment I (HVSI) portion of the control region of 53 of these individuals was sequenced, and the within-haplogroup diversity of 18 Native American populations from North, Central, and South America was analyzed. Within North America, populations in the West contain higher amounts of diversity than in other regions, probably due to a population expansion and high levels of gene flow among subpopulations in this region throughout prehistory. The distribution of haplogroups in the Southwest is structured more by archaeological tradition than by language. Yumans and Pimans exhibit substantially greater genetic diversity than the Jemez and Zuni, probably due to admixture and genetic isolation, respectively. We find no evidence of a movement of mtDNA lineages northward into the Southwest from Central Mexico, which, in combination with evidence from nuclear markers, suggests that the spread of Uto-Aztecan was facilitated by predominantly male migration. Southern Athapaskans probably experienced a bottleneck followed by extensive admixture during the migration to their current homeland in the Southwest.

PDF file

Unexpected Patterns of Mitochondrial DNA Variation Among Native Americans From the Southeastern United States

Mitochondrial DNA (mtDNA) haplogroups were determined by restriction fragment length polymorphism-typing for 66 individuals from four southeastern North American populations, and the HVS I portion of the mtDNA control region was sequenced in 48 of these individuals. Although populations from the same geographic region usually exhibit similar haplogroup frequency distributions (Lorenz and Smith [1996] Am. J. Phys. Anthropol. 101:307-323; Malhi et al. [2001] Hum. Biol. 73:17-55), those from the Southeast instead exhibit haplogroup frequency distributions that differ significantly from one another. Such divergent haplogroup frequency distributions are unexpected for the Muskogean-speaking southeastern populations, which share many sociocultural traits, speak closely related languages, and have experienced extensive admixture both with each other and with other eastern North American populations. Independent origins, genetic isolation from other Native American populations due to matrilocality, differential admixture, or a genetic bottleneck could be responsible for this heterogeneous distribution of haplogroup frequencies. Within a given haplogroup, however, the HVS I sequences from the four Muskogean-speaking populations appear relatively similar to one another, providing evidence for close relationships among them and for reduced diversity within haplogroups in the Southeast. Given additional archaeological, linguistic, and ethnographic evidence, these results suggest that a genetic bottleneck associated with the historical population decline is the most plausible explanation for such patterns of mtDNA variation.

PDF file