A Back Migration from Asia to Sub-Saharan Africa Is Supported by High-Resolution Analysis of Human Y-Chromosome Haplotypes
The variation of 77 biallelic sites located in the nonrecombining portion of the Y chromosome was examined in 608 male subjects from 22 African populations. This survey revealed a total of 37 binary haplotypes, which were combined with microsatellite polymorphism data to evaluate internal diversities and to estimate coalescence ages of the binary haplotypes. The majority of binary haplotypes showed a non-uniform distribution across the continent. Analysis of molecular variance detected a high level of interpopulation diversity, which appears to be partially related to the geography. In sub-Saharan Africa, the recent spread of a set of haplotypes partially erased pre-existing diversity, but a high level of population and geographic structuring persists. Correspondence analysis shows that three main clusters of populations can be identified: northern, eastern, and sub-Saharan Africans. Among the latter, the Khoisan, the Pygmies, and the northern Cameroonians are clearly distinct from a tight cluster formed by the Niger-Congo–speaking populations from western, central western, and southern Africa. Phylogeographic analyses suggest that a large component of the present Khoisan gene pool is eastern African in origin and that Asia was the source of a back migration to sub-Saharan Africa. Haplogroup IX Y-chromosomes appear to have been involved in such a migration, the traces of which can now be observed mostly in northern Cameroon.
PDF file
The T Allele of a Single-Nucleotide Polymorphism 13.9 kb Upstream of the Lactase Gene (LCT) (C513.9kbT) Does Not Predict or Cause the Lactase-Persistence Phenotype in Africans
The ability to digest the milk sugar lactose as an adult (lactase persistence) is a variable genetic trait in human populations. The lactase-persistence phenotype is found at low frequencies in the majority of populations in sub-Saharan Africa that have been tested, but, in some populations, particularly pastoral groups, it is significantly more frequent. Recently, a CT polymorphism located 13.9 kb upstream of exon 1 of the lactase gene (LCT) was shown in a Finnish population to be closely associated with the lactase-persistence phenotype (Enattah et al. 2002). We typed this polymorphism in 1,671 individuals from 20 distinct cultural groups in seven African countries. It was possible to match seven of the groups tested with groups from the literature for whom phenotypic information is available. In five of these groups, the published frequencies of lactase persistence are equal or greater than 25%. We found the T allele to be so rare that it cannot explain the frequency of the lactase-persistence phenotype throughout Africa. By use of a statistical procedure to take phenotyping and sampling errors into account, the T-allele frequency was shown to be significantly different from that predicted in five of the African groups. Only the Fulbe and Hausa from Cameroon possessed the T allele at a level consistent with phenotypic observations (as well as an Irish sample used for comparison). We conclude that the C513.9kbT polymorphism is not a predictor of lactase persistence in sub-Saharan Africans. We also present Y-chromosome data that are consistent with previously reported evidence for a back-migration event into Cameroon, and we comment on the implications for the introgression of the 513.9kb*T allele.
PDF file
African Y Chromosome and mtDNA Divergence Provides Insight into the History of Click Languages
Background: About 30 languages of southern Africa, spoken by Khwe and San, are characterized by a repertoire of click consonants and phonetic accompaniments. The Jumid R:'hoansi (!Kung) San carry multiple deeply coalescing gene lineages. The deep genetic diversity of the San parallels the diversity among the languages they speak. Intriguingly, the language of the Hadzabe of eastern Africa, although not closely related to any other language, shares click consonants and accompaniments with languages of Khwe and San.
Results: We present original Y chromosome and mtDNA variation of Hadzabe and other ethnic groups of Tanzania and Y chromosome variation of San and peoples of the central African forests: Biaka, Mbuti, and Lisongo. In the context of comparable published data for other African populations, analyses of each of these independently inherited DNA segments indicate that click-speaking Hadzabe and Jumid R:'hoansi are separated by genetic distance as great or greater than that between any other pair of African populations. Phylogenetic tree topology indicates a basal separation of the ancient ancestors of these click-speaking peoples. That genetic divergence does not appear to be the result of recent gene flow from neighboring groups.
Conclusions: The deep genetic divergence among click-speaking peoples of Africa and mounting linguistic evidence suggest that click consonants date to early in the history of modern humans. At least two explanations remain viable. Clicks may have persisted for tens of thousands of years, independently in multiple populations, as a neutral trait. Alternatively, clicks may have been retained, because they confer an advantage during hunting in certain environments.
PDF file
Supplementary Material
A Walk in the Garden of Eden: Genetic Trails into our African Past
PDF file
Isolates in a corridor of migrations: a high-resolution analysis of Y-chromosome variation in Jordan
A high-resolution, Y-chromosome analysis using 46 binary markers has been carried out in two Jordan populations, one from the metropolitan area of Amman and the other from the Dead Sea, an area geographically isolated. Comparisons with neighboring populations showed that whereas the sample from Amman did not significantly differ from their Levantine neighbors, the Dead Sea sample clearly behaved as a genetic outlier in the region. Its high R1*-M173 frequency (40%) has until now only been found in northern Cameroonian samples. This contrasts with the comparatively low presence of J representatives (9%), which is the modal clade in Middle Eastern populations, including Amman. The Dead Sea sample also showed a high presence of E3b3a-M34 lineages (31%), which is only comparable to that found in Ethiopians. Although ancient and recent ties with sub-Saharan and eastern Africans cannot be discarded, it seems that isolation, strong drift, and/or founder effects are responsible for the anomalous Y-chromosome pool of this population. These results demonstrate that, at a fine scale, the smooth, continental clines detected for several Y-chromosome markers are often disrupted by genetically divergent populations.
PDF file
The variation of 77 biallelic sites located in the nonrecombining portion of the Y chromosome was examined in 608 male subjects from 22 African populations. This survey revealed a total of 37 binary haplotypes, which were combined with microsatellite polymorphism data to evaluate internal diversities and to estimate coalescence ages of the binary haplotypes. The majority of binary haplotypes showed a non-uniform distribution across the continent. Analysis of molecular variance detected a high level of interpopulation diversity, which appears to be partially related to the geography. In sub-Saharan Africa, the recent spread of a set of haplotypes partially erased pre-existing diversity, but a high level of population and geographic structuring persists. Correspondence analysis shows that three main clusters of populations can be identified: northern, eastern, and sub-Saharan Africans. Among the latter, the Khoisan, the Pygmies, and the northern Cameroonians are clearly distinct from a tight cluster formed by the Niger-Congo–speaking populations from western, central western, and southern Africa. Phylogeographic analyses suggest that a large component of the present Khoisan gene pool is eastern African in origin and that Asia was the source of a back migration to sub-Saharan Africa. Haplogroup IX Y-chromosomes appear to have been involved in such a migration, the traces of which can now be observed mostly in northern Cameroon.
PDF file
The T Allele of a Single-Nucleotide Polymorphism 13.9 kb Upstream of the Lactase Gene (LCT) (C513.9kbT) Does Not Predict or Cause the Lactase-Persistence Phenotype in Africans
The ability to digest the milk sugar lactose as an adult (lactase persistence) is a variable genetic trait in human populations. The lactase-persistence phenotype is found at low frequencies in the majority of populations in sub-Saharan Africa that have been tested, but, in some populations, particularly pastoral groups, it is significantly more frequent. Recently, a CT polymorphism located 13.9 kb upstream of exon 1 of the lactase gene (LCT) was shown in a Finnish population to be closely associated with the lactase-persistence phenotype (Enattah et al. 2002). We typed this polymorphism in 1,671 individuals from 20 distinct cultural groups in seven African countries. It was possible to match seven of the groups tested with groups from the literature for whom phenotypic information is available. In five of these groups, the published frequencies of lactase persistence are equal or greater than 25%. We found the T allele to be so rare that it cannot explain the frequency of the lactase-persistence phenotype throughout Africa. By use of a statistical procedure to take phenotyping and sampling errors into account, the T-allele frequency was shown to be significantly different from that predicted in five of the African groups. Only the Fulbe and Hausa from Cameroon possessed the T allele at a level consistent with phenotypic observations (as well as an Irish sample used for comparison). We conclude that the C513.9kbT polymorphism is not a predictor of lactase persistence in sub-Saharan Africans. We also present Y-chromosome data that are consistent with previously reported evidence for a back-migration event into Cameroon, and we comment on the implications for the introgression of the 513.9kb*T allele.
PDF file
African Y Chromosome and mtDNA Divergence Provides Insight into the History of Click Languages
Background: About 30 languages of southern Africa, spoken by Khwe and San, are characterized by a repertoire of click consonants and phonetic accompaniments. The Jumid R:'hoansi (!Kung) San carry multiple deeply coalescing gene lineages. The deep genetic diversity of the San parallels the diversity among the languages they speak. Intriguingly, the language of the Hadzabe of eastern Africa, although not closely related to any other language, shares click consonants and accompaniments with languages of Khwe and San.
Results: We present original Y chromosome and mtDNA variation of Hadzabe and other ethnic groups of Tanzania and Y chromosome variation of San and peoples of the central African forests: Biaka, Mbuti, and Lisongo. In the context of comparable published data for other African populations, analyses of each of these independently inherited DNA segments indicate that click-speaking Hadzabe and Jumid R:'hoansi are separated by genetic distance as great or greater than that between any other pair of African populations. Phylogenetic tree topology indicates a basal separation of the ancient ancestors of these click-speaking peoples. That genetic divergence does not appear to be the result of recent gene flow from neighboring groups.
Conclusions: The deep genetic divergence among click-speaking peoples of Africa and mounting linguistic evidence suggest that click consonants date to early in the history of modern humans. At least two explanations remain viable. Clicks may have persisted for tens of thousands of years, independently in multiple populations, as a neutral trait. Alternatively, clicks may have been retained, because they confer an advantage during hunting in certain environments.
PDF file
Supplementary Material
A Walk in the Garden of Eden: Genetic Trails into our African Past
PDF file
Isolates in a corridor of migrations: a high-resolution analysis of Y-chromosome variation in Jordan
A high-resolution, Y-chromosome analysis using 46 binary markers has been carried out in two Jordan populations, one from the metropolitan area of Amman and the other from the Dead Sea, an area geographically isolated. Comparisons with neighboring populations showed that whereas the sample from Amman did not significantly differ from their Levantine neighbors, the Dead Sea sample clearly behaved as a genetic outlier in the region. Its high R1*-M173 frequency (40%) has until now only been found in northern Cameroonian samples. This contrasts with the comparatively low presence of J representatives (9%), which is the modal clade in Middle Eastern populations, including Amman. The Dead Sea sample also showed a high presence of E3b3a-M34 lineages (31%), which is only comparable to that found in Ethiopians. Although ancient and recent ties with sub-Saharan and eastern Africans cannot be discarded, it seems that isolation, strong drift, and/or founder effects are responsible for the anomalous Y-chromosome pool of this population. These results demonstrate that, at a fine scale, the smooth, continental clines detected for several Y-chromosome markers are often disrupted by genetically divergent populations.
PDF file