Genetic Chaos

Tuesday, May 02, 2006

Different genetic components in the Norwegian population revealed by the analysis of mtDNA and Y chromosome polymorphisms

The genetic composition of the Norwegian population was investigated by analysing polymorphisms associated with both the mitochondrial DNA (mtDNA) and Y chromosome loci in a sample of 74 Norwegian males. The combination of their uniparental mode of inheritance and the absence of recombination make these haplotypic stretches of DNA the tools of choice in evaluating the different components of a population’s gene pool. The sequencing of the Dloop and two diagnostic RFLPs (AluI 7025 and HinfI at 12 308) allowed us to classify the mtDNA molecules in 10 previously described groups. As for the Y chromosome the combination of binary markers and microsatellites allowed us to compare our results to those obtained elsewhere in Europe. Both mtDNA and Y chromosome polymorphisms showed a noticeable genetic affinity between Norwegians and central Europeans, especially Germans. When the phylogeographic analysis of the Y chromosome haplotypes was attempted some interesting clues on the peopling of Norway emerged. Although Y chromosome binary and microsatellite data indicate that 80% of the haplotypes are closely related to Central and western Europeans, the remainder share a unique binary marker (M17) common in eastern Europeans with informative microsatellite haplotypes suggesting a different demographic history. Other minor genetic influences on the Norwegian population from Uralic speakers and Mediterranean populations were also highlighted.

PDF file

Geographical heterogeneity of Y-chromosomal lineages in Norway

Y-chromosomal variation at five biallelic markers (Tat, YAP, 12f2, SRY10831 and 92R7) and nine multiallelic short tandem repeat (STR) loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385I/II and DYS388) in a Norwegian population sample are presented. The material consists of 1766 unrelated males of Norwegian origin. The geographical distribution of the population sample reflects fairly well the population distribution around the year 1942, which is the median birth year of the index persons. Seven hundred and twenty-one different Y-STR haplotypes but 726 different lineages (Y-STRs plus biallelic markers) were encountered. We observed six known (P*(xR1a), BR(xDE, J, N3, P), R1a, N3, DE, J), and one previously undescribed haplogroup (probably a subgroup within haplogroup P*(xR1a)). Four of the haplogroups (P*(xR1a), BR(xDE, J, N3, P), R1a and N3) represented about 98% of the population sample. The analysis of population pairwise differences indicates that the Norwegian Y-chromosome distribution most closely resembles those observed in Iceland, Germany, the Netherlands and Denmark. Within Norway, geographical substructuring was observed between regions and counties. The substructuring reflects to some extent the European Y-chromosome gradients, with higher frequency of P*(xR1a) in the south-west and of R1a in the east. Heterogeneity in major founder groups, geographical isolation, severe epidemics, historical trading links and population movements may have led to population stratification and have most probably contributed to the observed regional differences in distribution of haplotypes within two of the major haplogroups.

Cut and paste URL below:

Y-chromosomal STR haplotype analysis reveals surname-associated strata in the East-German population

In human populations, the correct historical interpretation of a genetic structure is often hampered by an almost inherent inability to differentiate between ancient and more recent influences upon extant gene pools. One method to trace recent population movements is the analysis of surnames, which, at least in Central Europe, can be thought of as traits 'linked' to the Y chromosome. Illegitimacy, extramarital birth and changes of surnames may have substantially obscured this linkage. In order to assess the actual extent of correlation between surnames and Y-chromosomal haplotypes in Central Europe, we typed Y-chromosomal short tandem repeat markers in 419 German males from Halle. These individuals were subdivided into three groups according to the origin of their respective surname, namely German (G), Slavic (S) or 'Mixed' (M). The distribution of the haplotypes was compared by Analysis of Molecular Variance. While the M group was indistinguishable from group G (Phi(ST)=-0.0008, P>0.5), a highly significant difference (Phi(ST)=0.0277, P<0.001) was observed between the S group and the combined G+M group. This surprisingly strong differentiation is comparable to that of European populations of much larger geographic and linguistic difference. In view of the major migration from Slavic countries into Germany in the 19th century, it appears likely that the observed concurrence of Slavic surnames and Y chromosomes is of a recent rather than an early origin. Our results suggest that surnames may provide a simple means to stratify, and thereby to render more efficient, Y-chromosomal analyses of Central Europeans that target more ancient events.

PDF file