Genetic Chaos

Friday, September 16, 2005

Joining the Pillars of Hercules: mtDNA Sequences Show Multidirectional Gene Flow in the Western Mediterranean

Phylogenetic analysis of mitochondrial DNA (mtDNA) performed in Western Mediterranean populations has shown that both shores share a common set of mtDNA haplogroups already found in Europe and the Middle East. Principal co-ordinates of genetic distances and principal components analyses based on the haplotype frequencies show that the main genetic difference is attributed to the higher frequency of sub-Saharan L haplogroups in NW Africa, showing some gene flow across the Sahara desert, with a major impact in the southern populations of NW Africa. The AMOVA demonstrates that SW European populations are highly homogeneous whereas NW African populations display a more heterogeneous genetic pattern, due to an east-west differentiation as a result of gene flow coming from the East. Despite the shared haplogroups found in both areas, the European V and the NW African U6 haplogroups reveal the traces of the Mediterranean Sea permeability to female migrations, and allowed for determination and quantification of the genetic contribution of both shores to the genetic landscape of the geographic area.

Comparison of mtDNA data with autosomal markers and Y-chromosome lineages, analysed in the same populations, shows a congruent pattern, although female-mediated gene flow seems to have been more intense than male-mediated gene flow.

PDF file

Trading Genes along the Silk Road: mtDNA Sequences and the Origin of Central Asian Populations

Central Asia is a vast region at the crossroads of different habitats, cultures, and trade routes. Little is known about the genetics and the history of the population of this region. We present the analysis of mtDNA control-region sequences in samples of the Kazakh, the Uighurs, the lowland Kirghiz, and the highland Kirghiz, which we have used to address both the population history of the region and the possible selective pressures that high altitude has on mtDNA genes. Central Asian mtDNA sequences present features intermediate between European and eastern Asian sequences, in several parameterssuch as the frequencies of certain nucleotides, the levels of nucleotide diversity, mean pairwise differences, and genetic distances. Several hypotheses could explain the intermediate position of central Asia between Europe and eastern Asia, but the most plausible would involve extensive levels of admixture between Europeans and eastern Asians in central Asia, possibly enhanced during the Silk Road trade and clearly after the eastern and western Eurasian human groups had diverged. Lowland and highland Kirghiz mtDNA sequences are very similar, and the analysis of molecular variance has revealed that the fraction of mitochondrial genetic variance due to altitude is not significantly different from zero. Thus, it seems unlikely that altitude has exerted a major selective pressure on mitochondrial genes in central Asian populations.

PDF file

Admixture, migrations, and dispersals in Central Asia: evidence from maternal DNA lineages

Mitochondrial DNA (mtDNA) lineages of 232 individuals from 12 Central Asian populations were sequenced for both control region hypervariable segments, and additional informative sites in the coding region were also determined. Most of the mtDNA lineages belong to branches of the haplogroups with an eastern Eurasian (A, B, C, D, F, G, Y, and M haplogroups) or a western Eurasian (HV, JT, UK, I, W, and N haplogroups) origin, with a small fraction of Indian M lineages. This suggests that the extant genetic variation found in Central Asia is the result of admixture of already differentiated populations from eastern and western Eurasia. Nonetheless, two groups of lineages, D4c and G2a, seem to have expanded from Central Asia and might have their Y-chromosome counterpart in lineages belonging to haplotype P(xR1a). The present results suggest that the mtDNA found out of Africa might be the result of a maturation phase, presumably in the Middle East or eastern Africa, that led to haplogroups M and N, and subsequently expanded into Eurasia, yielding a geographically structured group of external branches of these two haplogroups in western and eastern Eurasia, Central Asia being a contact zone between two differentiated groups of peoples.

PDF file

Thursday, September 15, 2005

The Genetic Legacy of the Mongols

We have identified a Y-chromosomal lineage with several unusual features. It was found in 16 populations throughout a large region of Asia, stretching from the Pacific to the Caspian Sea, and was present at high frequency: approximately 8% of the men in this region carry it, and it thus makes up about 0.5% of the world total. The pattern of variation within the lineage suggested that it originated in Mongolia about 1,000 years ago. Such a rapid spread cannot have occurred by chance; it must have been a result of selection. The lineage is carried by likely male-line descendants of Genghis Khan, and we therefore propose that it has spread by a novel form of social selection resulting from their behavior.

PDF file

Genetic Evidence for the Mongolian Ancestry of Kalmyks

The Kalmyks are an ethnic group along the lower Volga River in Russia who are thought to have migrated there from Mongolia about 300 years ago. To investigate their origins, we studied mtDNA and Y-chromosome variation in 99 Kalmyks. Both mtDNA HV1 sequences and Y-chromosome SNP haplogroups indicate a close relationship of Kalmyks with Mongolians. In addition, genetic diversity for both mtDNA and the Y chromosome are comparable in Kalmyks, Mongolians, and other Central Asian groups, indicating that the Kalmyk migration was not associated with a substantial bottleneck. The so-called "Genghis Khan" Y-chromosome short tandem repeat (STR) haplotype was found in high frequency (31.3%) among Kalmyks, further supporting a strong genetic connection between Kalmyks and Mongolians. Genetic analyses of even recent, relatively well-documented migrations such as of the Kalmyks can therefore lead to new insights concerning such migrations.

PDF file

mtDNA Analysis of Nile River Valley Populations: A Genetic Corridor or a Barrier to Migration?

To assess the extent to which the Nile River Valley has been a corridor for human migrations between Egypt and sub-Saharan Africa, we analyzed mtDNA variation in 224 individuals from various locations along the river. Sequences of the first hypervariable segment (HV1) of the mtDNA control region and a polymorphic HpaI site at position 3592 allowed us to designate each mtDNA as being of “northern” or “southern” affiliation. Proportions of northern and southern mtDNA differed significantly between Egypt, Nubia, and the southern Sudan. At slowly evolving sites within HV1, northern-mtDNA diversity was highest in Egypt and lowest in the southern Sudan, and southern-mtDNA diversity was highest in the southern Sudan and lowest in Egypt, indicating that migrations had occurred bidirectionally along the Nile River Valley. Egypt and Nubia have low and similar amounts of divergence for both mtDNA types, which is consistent with historical evidence for long-term interactions between Egypt and Nubia. Spatial autocorrelation analysis demonstrates a smooth gradient of decreasing genetic similarity of mtDNA types as geographic distance between sampling localities increases, strongly suggesting gene flow along the Nile, with no evident barriers.We conclude that these migrations probably occurred within the past few hundred to few thousand years and that the migration from north to south was either earlier or lesser in the extent of gene flow than the migration from south to north.

PDF file

Explanation of the Pattern of P49a,f TaqI RFLP Y-Chromosome Variation in Egypt

The possible factors involved in the generation of the p49a,f TaqI Y-chromosome spatial diversity in Egypt are explored. The object is to consider explanations beyond those that emphasize gene flow mediated via military campaigns within the Nile corridor during the dynastic period. Current patterns of the most common variants (V, XI, IV) have been suggested to relate to Middle Kingdom and New Kingdom political actions in Nubia, including sometimes settler colonization, and the conquest of Egypt by Napata (in upper Nubia, northern Sudan) that initiated Dynasty XXV. Other events or processes have not been presented. However, a synthesis of evidence from archaeology, historical linguistics, texts, the distribution of haplotypes outside of Egypt, and some demographic considerations, lends greater support to the establishment, before the Middle Kingdom, of the observed distributions of the most prevalent haplotypes: V, XI, and IV. It is suggested that the pattern of diversity for these variants in the Egyptian Nile Valley, was largely the product of population events that occurred in the late Pleistocene to mid-Holocene through Dynasty I, and was sustained by continuous smaller scale bi- directional migrations/interactions. The higher frequency of V in Ethiopia than in Nubia or upper (southern) Egypt, has to be taken into account in any discussion of variation in the Nile Valley, especially in the context of the findings of historical linguistics.

PDF file