Genetic Chaos

Tuesday, June 21, 2005

The 49a,f Haplotype 11 is a New Marker of the EU19 Lineage that Traces Migrations from Northern Regions of the Black Sea

Previous studies on human Y-chromosome polymorphisms in the European populations highlighted the high frequency of the 49a,f/TaqI haplotype 11 and of the Eu19 (M17) lineage in Eastern Europe. To better understand the origin and the evolution of the Eu19, and its relationship with 49a,f Ht11, this study surveyed 2,235 individuals (mainly from Europe and the Middle East) for the 49a,f Ht11 and for many biallelic markers defining the Eu19 lineage. As previously described, the highest frequency of Eu19 was found in Eastern Europe. All the Eu19 Y-chromosomes turned out to be 49a,f Ht11 or its derivatives, the distribution of which suggests that the Eu19/49a,f Ht11 emerged in Ukraine, probably in a Palaeolithic population. Thereafter, the spread of this lineage toward Europe, Asia, and India occurred at different waves over a few thousands years. At present this seems to indicate the influence of the Ukraine Palaeolithic groups in the gene pool of modern populations. For the first time it is possible to make inferences about the evolution of some haplotypes of the 49a,f system. In spite of its unknown molecular base, this is one of the first most informative polymorphisms of the Y chromosome.

PDF file

Thursday, June 02, 2005

The Making of the African mtDNA Landscape

Africa presents the most complex genetic picture of any continent, with a time depth for mitochondrial DNA (mtDNA) lineages >100,000 years. The most recent widespread demographic shift within the continent was most probably the Bantu dispersals, which archaeological and linguistic evidence suggest originated in West Africa 3,000-4,000 years ago, spreading both east and south. Here, we have carried out a thorough phylogeographic analysis of mtDNA variation in a total of 2,847 samples from throughout the continent, including 307 new sequences from southeast African Bantu speakers. The results suggest that the southeast Bantu speakers have a composite origin on the maternal line of descent, with ~44% of lineages deriving from West Africa, ~21% from either West or Central Africa, ~30% from East Africa, and ~5% from southern African Khoisan-speaking groups. The ages of the major founder types of both West and East African origin are consistent with the likely timing of Bantu dispersals, with those from the west somewhat predating those from the east. Despite this composite picture, the southeastern African Bantu groups are indistinguishable from each other with respect to their mtDNA, suggesting that they either had a common origin at the point of entry into southeastern Africa or have undergone very extensive gene flow since.

PDF file

Genetics and linguistics in sub-Saharan Africa

PDF file

MtDNA Profile of West Africa Guineans: Towards a Better Understanding of the Senegambia Region

The matrilineal genetic composition of 372 samples from the Republic of Guine-Bissau (West African coast) was studied using RFLPs and partial sequencing of the mtDNA control and coding region. The majority of the mtDNA lineages of Guineans (94%) belong to West African specific sub-clusters of L0-L3 haplogroups. A new L3 sub-cluster (L3h) that is found in both eastern and western Africa is present at moderately low frequencies in Guinean populations. A non-random distribution of haplogroups U5 in the Fula group, the U6 among the "Brame" linguistic family and M1 in the Balanta-Djola group, suggests a correlation between the genetic and linguistic affiliation of Guinean populations. The presence of M1 in Balanta populations supports the earlier suggestion of their Sudanese origin. Haplogroups U5 and U6, on the other hand, were found to be restricted to populations that are thought to represent the descendants of a southern expansion of Berbers. Particular haplotypes, found almost exclusively in East-African populations, were found in some ethnic groups with an oral tradition claiming Sudanese origin.

PDF file

Contrasting patterns of Y chromosome and mtDNA variation in Africa: evidence for sex-biased demographic processes

To investigate associations between genetic, linguistic, and geographic variation in Africa, we type 50 Y chromosome SNPs in 1122 individuals from 40 populations representing African geographic and linguistic diversity. We compare these patterns of variation with those that emerge from a similar analysis of published mtDNA HVS1 sequences from 1918 individuals from 39 African populations. For the Y chromosome, Mantel tests reveal a strong partial correlation between genetic and linguistic distances (r=0.33, P=0.001) and no correlation between genetic and geographic distances (r=-0.08, P>0.10). In contrast, mtDNA variation is weakly correlated with both language (r=0.16, P=0.046) and geography (r=0.17, P=0.035). AMOVA indicates that the amount of paternal among-group variation is much higher when populations are grouped by linguistics (Phi(CT)=0.21) than by geography (Phi(CT)=0.06). Levels of maternal genetic among-group variation are low for both linguistics and geography (Phi(CT)=0.03 and 0.04, respectively). When Bantu speakers are removed from these analyses, the correlation with linguistic variation disappears for the Y chromosome and strengthens for mtDNA. These data suggest that patterns of differentiation and gene flow in Africa have differed for men and women in the recent evolutionary past. We infer that sex-biased rates of admixture and/or language borrowing between expanding Bantu farmers and local hunter-gatherers played an important role in influencing patterns of genetic variation during the spread of African agriculture in the last 4000 years.

PDF file

Supplemental Data