Trading Genes along the Silk Road: mtDNA Sequences and the Origin of Central Asian Populations
Central Asia is a vast region at the crossroads of different habitats, cultures, and trade routes. Little is known about the genetics and the history of the population of this region. We present the analysis of mtDNA control-region sequences in samples of the Kazakh, the Uighurs, the lowland Kirghiz, and the highland Kirghiz, which we have used to address both the population history of the region and the possible selective pressures that high altitude has on mtDNA genes. Central Asian mtDNA sequences present features intermediate between European and eastern Asian sequences, in several parameterssuch as the frequencies of certain nucleotides, the levels of nucleotide diversity, mean pairwise differences, and genetic distances. Several hypotheses could explain the intermediate position of central Asia between Europe and eastern Asia, but the most plausible would involve extensive levels of admixture between Europeans and eastern Asians in central Asia, possibly enhanced during the Silk Road trade and clearly after the eastern and western Eurasian human groups had diverged. Lowland and highland Kirghiz mtDNA sequences are very similar, and the analysis of molecular variance has revealed that the fraction of mitochondrial genetic variance due to altitude is not significantly different from zero. Thus, it seems unlikely that altitude has exerted a major selective pressure on mitochondrial genes in central Asian populations.
PDF file
Admixture, migrations, and dispersals in Central Asia: evidence from maternal DNA lineages
Mitochondrial DNA (mtDNA) lineages of 232 individuals from 12 Central Asian populations were sequenced for both control region hypervariable segments, and additional informative sites in the coding region were also determined. Most of the mtDNA lineages belong to branches of the haplogroups with an eastern Eurasian (A, B, C, D, F, G, Y, and M haplogroups) or a western Eurasian (HV, JT, UK, I, W, and N haplogroups) origin, with a small fraction of Indian M lineages. This suggests that the extant genetic variation found in Central Asia is the result of admixture of already differentiated populations from eastern and western Eurasia. Nonetheless, two groups of lineages, D4c and G2a, seem to have expanded from Central Asia and might have their Y-chromosome counterpart in lineages belonging to haplotype P(xR1a). The present results suggest that the mtDNA found out of Africa might be the result of a maturation phase, presumably in the Middle East or eastern Africa, that led to haplogroups M and N, and subsequently expanded into Eurasia, yielding a geographically structured group of external branches of these two haplogroups in western and eastern Eurasia, Central Asia being a contact zone between two differentiated groups of peoples.
PDF file
Central Asia is a vast region at the crossroads of different habitats, cultures, and trade routes. Little is known about the genetics and the history of the population of this region. We present the analysis of mtDNA control-region sequences in samples of the Kazakh, the Uighurs, the lowland Kirghiz, and the highland Kirghiz, which we have used to address both the population history of the region and the possible selective pressures that high altitude has on mtDNA genes. Central Asian mtDNA sequences present features intermediate between European and eastern Asian sequences, in several parameterssuch as the frequencies of certain nucleotides, the levels of nucleotide diversity, mean pairwise differences, and genetic distances. Several hypotheses could explain the intermediate position of central Asia between Europe and eastern Asia, but the most plausible would involve extensive levels of admixture between Europeans and eastern Asians in central Asia, possibly enhanced during the Silk Road trade and clearly after the eastern and western Eurasian human groups had diverged. Lowland and highland Kirghiz mtDNA sequences are very similar, and the analysis of molecular variance has revealed that the fraction of mitochondrial genetic variance due to altitude is not significantly different from zero. Thus, it seems unlikely that altitude has exerted a major selective pressure on mitochondrial genes in central Asian populations.
PDF file
Admixture, migrations, and dispersals in Central Asia: evidence from maternal DNA lineages
Mitochondrial DNA (mtDNA) lineages of 232 individuals from 12 Central Asian populations were sequenced for both control region hypervariable segments, and additional informative sites in the coding region were also determined. Most of the mtDNA lineages belong to branches of the haplogroups with an eastern Eurasian (A, B, C, D, F, G, Y, and M haplogroups) or a western Eurasian (HV, JT, UK, I, W, and N haplogroups) origin, with a small fraction of Indian M lineages. This suggests that the extant genetic variation found in Central Asia is the result of admixture of already differentiated populations from eastern and western Eurasia. Nonetheless, two groups of lineages, D4c and G2a, seem to have expanded from Central Asia and might have their Y-chromosome counterpart in lineages belonging to haplotype P(xR1a). The present results suggest that the mtDNA found out of Africa might be the result of a maturation phase, presumably in the Middle East or eastern Africa, that led to haplogroups M and N, and subsequently expanded into Eurasia, yielding a geographically structured group of external branches of these two haplogroups in western and eastern Eurasia, Central Asia being a contact zone between two differentiated groups of peoples.
PDF file