Genetic Chaos

Friday, May 28, 2004

Native American Y Chromosomes in Polynesia: The Genetic Impact of the Polynesian Slave Trade

Since Thor Heyerdahl asserted that Polynesia was first colonized from the Americas (Heyerdahl 1950), geneticists have sought—but have not found—any evidence to support his theories. Here, Native American Y-chromosomes are detected on the Polynesian island of Rapa. However, this, together with other odd features of the island’s Y-chromosomal gene pool, is best explained as the genetic impact of a 19th century Peruvian slave trade in Polynesia. These findings underscore the need to account for history before turning to prehistory and the value of archival research to understanding modern genetic diversity. Although the impact of the Atlantic slave trade on the distribution of modern genetic diversity has been well appreciated, this represents the first study investigating the impact of this underappreciated episode on genetic diversity in the Pacific.

PDF file

European Y-Chromosomal Lineages in Polynesians: A Contrast to the Population Structure Revealed by mtDNA

We have used Y-chromosomal polymorphisms to trace paternal lineages in Polynesians by use of samples previously typed for mtDNA variants. A genealogical approach utilizing hierarchical analysis of eight rare-event biallelic polymorphisms, seven microsatellite loci, and internal structural analysis of the hypervariable minisatellite, MSY1, has been used to define three major paternal-lineage clusters in Polynesians. Two of these clusters, both defined by novel MSY1 modular structures and representing 55% of the Polynesians studied, are also found in coastal Papua New Guinea. Reduced Polynesian diversity, relative to that in Melanesians, is illustrated by the presence of several examples of identical MSY1 codes and microsatellite haplotypes within these lineage clusters in Polynesians. The complete lack of Y chromosomes having the M4 base substitution in Polynesians, despite their prevalence (64%) in Melanesians, may also be a result of the multiple bottleneck events during the colonization of this region of the world. The origin of the M4 mutation has been dated by use of two independent methods based on microsatellite-haplotype and minisatellite-code diversity. Because of the wide confidence limits on the mutation rates of these loci, the M4 mutation cannot be conclusively dated relative to the colonization of Polynesia, 3,000 years ago. The other major lineage cluster found in Polynesians, defined by a base substitution at the 92R7 locus, represents 27% of the Polynesians studied and, most probably, originates in Europe. This is the first Y-chromosomal evidence of major European admixture with indigenous Polynesian populations and contrasts sharply with the picture given by mtDNA evidence.

PDF file

Melanesian origin of Polynesian Y chromosomes

Background: Two competing hypotheses for the origins of Polynesians are the ‘express-train’ model, which supposes a recent and rapid expansion of Polynesian ancestors from Asia/Taiwan via coastal and island Melanesia, and the ‘entangled-bank’ model, which supposes a long history of cultural and genetic interactions among Southeast Asians, Melanesians and Polynesians. Most genetic data, especially analyses of mitochondrial DNA (mtDNA) variation, support the express-train model, as does linguistic and archaeological evidence. Here, we used Y-chromosome polymorphisms to investigate the origins of Polynesians.

Results: We analysed eight single nucleotide polymorphisms (SNPs) and seven short tandem repeat (STR) loci on the Y chromosome in 28 Cook Islanders from Polynesia and 583 males from 17 Melanesian, Asian and Australian populations. We found that all Polynesians belong to just three Y-chromosome haplotypes, as defined by unique event polymorphisms. The major Y haplotype in Polynesians (82% frequency) was restricted to Melanesia and eastern Indonesia and most probably arose in Melanesia. Coalescence analysis of associated Y-STR haplotypes showed evidence of a population expansion in Polynesians, beginning about 2,200 years ago. The other two Polynesian Y haplotypes were widespread in Asia but were also found in Melanesia.

Conclusions: All Polynesian Y chromosomes can be traced back to Melanesia, although some of these Y-chromosome types originated in Asia. Together with other genetic and cultural evidence, we propose a new model of Polynesian origins that we call the ‘slow-boat’ model: Polynesian ancestors did originate from Asia/Taiwan but did not move rapidly through Melanesia; rather, they interacted with and mixed extensively with Melanesians, leaving behind their genes and incorporating many Melanesian genes before colonising the Pacific.

PDF file

Traces of Human Migrations in Helicobacter pylori Populations

Helicobacter pylori, a chronic gastric pathogen of human beings, can be divided into seven populations and subpopulations with distinct geographical distributions. These modern populations derive their gene pools from ancestral populations that arose in Africa, Central Asia, and East Asia. Subsequent spread can be attributed to human migratory fluxes such as the prehistoric colonization of Polynesia and the Americas, the neolithic introduction of farming to Europe, the Bantu expansion within Africa, and the slave trade.

PDF file

East Asian genotypes of Helicobacter pylori strains in Amerindians provide evidence for its ancient human carriage

Phylogenies of indigenous microbes have been used as surrogates for the origins of the hosts that carry them. Conversely, polymorphisms may be used to date the spread of a microbial species when information about their host populations is available. Therefore, we examined polymorphisms in Helicobacter pylori, which persistently colonize the human stomach, to test the hypothesis that they have been ancient inhabitants of humans. Three H. pylori loci that previously have been shown to have phylogeographic affinity have been analyzed for two populations with different ethnic origins from Venezuela. In a group of Amerindian subjects from Amazonia, East Asian H. pylori genotypes were present for each of the loci examined but were absent in a mestizo population from Caracas. These findings provide evidence that H. pylori has been present in humans at least since ancestors of Amerindians migrated from Asia more than 11,000 years ago.

PDF file

Distinguishing human ethnic groups by means of sequences from Helicobacter pylori: Lessons from Ladakh

The history of mankind remains one of the most challenging fields of study. However, the emergence of anatomically modern humans has been so recent that only a few genetically informative polymorphisms have accumulated. Here, we show that DNA sequences from Helicobacter pylori, a bacterium that colonizes the stomachs of most humans and is usually transmitted within families, can distinguish between closely related human populations and are superior in this respect to classical human genetic markers. H. pylori from Buddhists and Muslims, the two major ethnic communities in Ladakh (India), differ in their population-genetic structure. Moreover, the prokaryotic diversity is consistent with the Buddhists having arisen from an introgression of Tibetan speakers into an ancient Ladakhi population. H. pylori from Muslims contain a much stronger ancestral Ladakhi component, except for several isolates with an Indo-European signature, probably reflecting genetic flux from the Near East. These signatures in H. pylori sequences are congruent with the recent history of population movements in Ladakh, whereas similar signatures in human microsatellites or mtDNA were only marginally significant. H. pylori sequence analysis has the potential to become an important tool for unraveling short-term genetic changes in human populations.

PDF file

HUMAN MIGRATIONS AND POPULATION STRUCTURE: What We Know and Why it Matters

The increasingly obvious medical relevance of human genetic variation is fueling the development of a rich interface between medical genetics and the study of human genetic history. A key feature of this interface is a step increase in the size and diversity of genetic data sets, permitting a range of new questions to be addressed concerning our evolutionary history. Similarly, methodologies first developed to study genetic history are being tailored to address medical challenges, including mapping genes that influence diseases and variable drug reactions. In this paper we do not attempt a comprehensive review of human genetic history. Rather we briefly outline some of the complications and challenges in the study of human genetic history, drawing particular attention to new opportunities created by the explosive growth in genetic information and technologies. First we discuss the complexity of human migration and demographic history, taking both a genetic and archaeological perspective. Then we show how these apparently academic issues are becoming increasingly important in medical genetics, focusing on association studies, the common disease/common variant hypothesis, the evaluation of variable drug response, and inferences about gene function from patterns of genetic variation. Finally we describe some of the inferential approaches available for interpreting human genetic variation, focusing both on current limitations and future developments.

PDF file

Thursday, May 27, 2004

Ribeiro’s typology, genomes, and Spanish colonialism, as viewed from Gran Canaria and Colombia

Four biallelic and six multiallelic Y-chromosome polymorphisms were investigated in 59 Gran Canarian, 60 North African Berber and 46 Spanish subjects. These new data were merged with equivalent literature information to obtain the parental Y-chrosomomal contribution in Gran Canarians, Colombians, and Venezuelans. The results were then compared, for Gran Canarians and Colombians, to those derived from autosomal and mtDNA. In both groups, the Spanish Y-chromosome contribution was much more marked than that estimated using mtDNA. This analysis showed a usual trend in the Spanish Colonial history, characterized by a demographic collapse of the aboriginal population, but with considerable introgression of genes through native women. In accordance to D. Ribeiro’s typology for peoples subjected to Colonialism, the Y-chromosomes of these admixed populations are classified as transplanted, their mtDNA as witness, and their autosome sets as new.

PDF file

Transplanted Male Genomes in Three Venezuelan Populations

Since the Conquest and Colonization of the New World, Native American history has been strongly influenced by important migrations from Europe and Africa. The arrival of immigrants led to the establishment of a rapidly growing admixed population and a concomitant decline in the Amerind groups (Salzano and Bortolini, 2002). Among the Spaniard migrants, those from the Canary Islands have arrived continuously to Venezuela since the Colonial period, some Venezuelan regions having a well-known Canarian influence (Castillo Lara, 1980; Cunill Grau, 1987; Lynch, 1987). Cultural aspects of this influence have been reported (Báez Gutiérrez, 1995, Rodríguez, 1995), but little is known about their biological contribution. Recently published studies have demonstrated the maintenance of the original Canarian gene pool in three semi-isolated Venezuelan populations: San Antonio de Los Altos, San Diego de Los Altos and Hoyo de La Cumbre. Using classical genetic polymorphisms Castro de Guerra and Zambrano (2000) found that the European genetic contribution is majoritarian, with values ranging from 78% (San Diego) to 92% (Hoyo de La Cumbre). On the other hand, genetic distance analyses suggested that this component is mainly of Canarian origin in Hoyo de La Cumbre and San Antonio, whereas in San Diego other European influences should also be considered.

PDF file

Mitochondrial DNA transit between West Asia and North Africa inferred from U6 phylogeography

Background: World-wide phylogeographic distribution of human complete mitochondrial DNA sequences suggested a West Asian origin for the autochthonous North African lineage U6. We report here a more detailed analysis of this lineage, unraveling successive expansions that affected not only Africa but neighboring regions such as the Near East, the Iberian Peninsula and the Canary Islands.

Results: Divergence times, geographic origin and expansions of the U6 mitochondrial DNA clade, have been deduced from the analysis of 14 complete U6 sequences, and 56 different haplotypes, characterized by hypervariable segment sequences and RFLPs.

Conclusions: The most probable origin of the proto-U6 lineage was the Near East. Around 30,000 years ago it spread to North Africa where it represents a signature of regional continuity. Subgroup U6a reflects the first African expansion from the Maghrib returning to the east in Paleolithic times. Derivative clade U6a1 signals a posterior movement from East Africa back to the Maghrib and the Near East. This migration coincides with the probable Afroasiatic linguistic expansion. U6b and U6c clades, restricted to West Africa, had more localized expansions. U6b probably reached the Iberian Peninsula during the Capsian diffusion in North Africa. Two autochthonous derivatives of these clades (U6b1 and U6c1) indicate the arrival of North African settlers to the Canarian Archipelago in prehistoric times, most probably due to the Saharan desiccation. The absence of these Canarian lineages nowadays in Africa suggests important demographic movements in the western area of this Continent.

PDF file

Mitochondrial portraits of the Madeira and Açores archipelagos witness different genetic pools of its settlers

We have studied the matrilineal genetic composition of the Madeira and Açores north Atlantic archipelagos, which were settled by the Portuguese in the 15th century. Both archipelagos, and particularly Madeira, were involved in a complex commercial network established by the Portuguese, which included the trading of slaves across the Atlantic. One hundred and fifty-five mtDNAs sampled from the Madeira and 179 from the Açores archipelagos were analysed for the hypervariable segment I (HVS-I), and for haplogroup-diagnostic coding-region RFLPs. The different settlement histories of both groups of islands are well reflected in their present day mtDNA pool. Although both archipelagos show identical diversity values, they are clearly different in their haplogroup content. Madeira displays a stronger sub-Saharan imprint, with haplogroups L1–L3 constituting about 13% of the lineages. Also, the relative frequencies of L sub-clusters in Madeira and mainland Portugal suggests that, at least in part, African presence in Madeira can be attributed to a direct gene flow from West Africa and not via Portugal. A comparison of the genetic composition of these two archipelagos with the Canary Islands, specially taking into account that their European source population was essentially from the Iberian Peninsula, testifies the stronger impact of the North African U6 cluster in the Canaries. This group is present in Madeira at a moderate frequency, but very reduced in the Açores. Nevertheless the recorded introduction of Canary native Guanches, who are characterized by the presence of particular sub-clade U6b1, has left no detectable imprints in the present day population of Madeira.

PDF file

Inferring Admixture Proportions from Molecular Data: Extension to Any Number of Parental Populations

The relative contribution of two parental populations to a hybrid group (the admixture proportions) can be estimated using not only the frequencies of different alleles, but also the degree of molecular divergence between them. In this paper, we extend this possibility to the case of any number of parental populations. The newly derived multiparental estimator is tested by Monte Carlo simulations and by generating artificial hybrid groups by pooling mtDNA samples from human populations. The general properties (including the variance) of the two-parental estimator seem to be retained by the multiparental estimator. When mixed human populations are considered and hypervariable single-locus data are analyzed (mtDNA control region), errors in the estimated contributions appear reasonably low only when highly differentiated parental populations are involved. Finally, the method applied to the hybrid Canary Island population points to a much lower female contribution from Spain than has previously been estimated.

PDF file

The Phylogeography of Brazilian Y-Chromosome Lineages

We examined DNA polymorphisms in the nonrecombining portion of the Y-chromosome to investigate the contribution of distinct patrilineages to the present-day white Brazilian population. Twelve unique-event polymorphisms were typed in 200 unrelated males from four geographical regions of Brazil and in 93 Portuguese males. In our Brazilian sample, the vast majority of Y-chromosomes proved to be of European origin. Indeed, there were no significant differences when the haplogroup frequencies in Brazil and Portugal were compared by means of an exact test of population differentiation. Y-chromosome typing was quite sensitive in the detection of regional immigration events. Distinct footprints of Italian immigration to southern Brazil, migration of Moroccan Jews to the Amazon region, and possible relics of the 17th-century Dutch invasion of northeast Brazil could be seen in the data. In sharp contrast with our mtDNA data in white Brazilians, which showed that >60% of the matrilineages were Amerindian or African, only 2.5% of the Y-chromosome lineages were from sub-Saharan Africa, and none were Amerindian. Together, these results configure a picture of strong directional mating between European males and Amerindian and African females, which agrees with the known history of the peopling of Brazil since 1500.

PDF file

The Ancestry of Brazilian mtDNA Lineages

We have analyzed 247 Brazilian mtDNAs for hypervariable segment (HVS)–I and selected restriction fragment length–polymorphism sites, to assess their ancestry in different continents. The total sample showed nearly equal amounts of Native American, African, and European matrilineal genetic contribution but with regional differences within Brazil. The mtDNA pool of present-day Brazilians clearly reflects the imprints of the early Portuguese colonization process (involving directional mating), as well as the recent immigrant waves (from Europe) of the last century. The subset of 99 mtDNAs from the southeastern region encompasses nearly all mtDNA haplogroups observed in the total Brazilian sample; for this regional subset, HVS-II was analyzed, providing, in particular, some novel details of the African mtDNA phylogeny.

PDF file

Mutation Analysis of the HFE Gene in Brazilian Populations

We analyzed the frequency of the C282Y and H63D mutations in the HFE gene in 227 individuals from Brazil comprising 71 Caucasians, 91 racially mixed Caucasian African-derived Amerindians (both populations from Southeast Brazil), 85 African-derived subjects (from Northeast Brazil) and 75 Parakanã Indians. Allelic frequency of the mutation C. 845G6A (C282Y) was 1.4% in the Caucasian population, 1.1% in the African-derived population, 1.1% in the racially mixed normal controls and 0% in the Parakanã Indians. In the African-derived population, the C282Y mutation was present on chromosomes bearing the haplotype 6/1h according to Beutler and West (1997). Allelic frequency of the mutation C. 187C6G (H63D) was 16.3% in the Caucasian population, 7.5% in the African-derived population, 9.8% in the racially mixed controls and 0% in the Amerindians. The presence of these mutations in the African-derived population reflects the fact that these subjects may have undergone a non-identified racial admixture in their past history. The absence of both defects in the Amerindians suggests that these mutations have emerged after the migration of Polynesians to America, or that they may not have reached the Polynesian population until after the migration to America had occurred.

PDF file

Genetic relationships among native americans based on β-globin gene cluster haplotype frequencies

The distribution of β-globin gene haplotypes was studied in 209 Amerindians from eight tribes of the Brazilian Amazon: Asurini from Xingú, Awá-Guajá, Parakanã, Urubú-Kaapór, Zoé, Kayapó (Xikrin from the Bacajá village), Katuena, and Tiriyó. Nine different haplotypes were found, two of which (n. 11 and 13) had not been previously identified in Brazilian indigenous populations. Haplotype 2 (+ - - - -) was the most common in all groups studied, with frequencies varying from 70% to 100%, followed by haplotype 6 (- + + - +), with frequencies between 7% and 18%. The frequency distribution of the β-globin gene haplotypes in the eighteen Brazilian Amerindian populations studied to date is characterized by a reduced number of haplotypes (average of 3.5) and low levels of heterozygosity and intrapopulational differentiation, with a single clearly predominant haplotype in most tribes (haplotype 2). The Parakanã, Urubú-Kaapór, Tiriyó and Xavante tribes constitute exceptions, presenting at least four haplotypes with relatively high frequencies. The closest genetic relationships were observed between the Brazilian and the Colombian Amerindians (Wayuu, Kamsa and Inga), and, to a lesser extent, with the Huichol of Mexico. North-American Amerindians are more differentiated and clearly separated from all other tribes, except the Xavante, from Brazil, and the Mapuche, from Argentina. A restricted pool of ancestral haplotypes may explain the low diversity observed among most present-day Brazilian and Colombian Amerindian groups, while interethnic admixture could be the most important factor to explain the high number of haplotypes and high levels of diversity observed in some South-American and most North-American tribes.

PDF file

Phylogeography of the human mitochondrial haplogroup L3e: a snapshot of African prehistory and Atlantic slave trade

The mtDNA haplogroup L3e, which is identified by the restriction site ­2349 MboI within the Afro-Eurasian superhaplogroup L3 (-3592 HpaI), is omnipresent in Africa but virtually absent in Eurasia (except for neighbouring areas with limited genetic exchange). L3e was hitherto poorly characterised in terms of HVS-I motifs, as the ancestral HVS-I type of L3e cannot be distinguished from the putative HVS-I ancestor of the entire L3 (differing from the CRS by a transition at np 16223). An MboI screening at np 2349 of a large number of Brazilian and Caribbean mtDNAs (encompassing numerous mtDNAs of African ancestry), now reveals that L3e is subdivided into four principal clades, each characterised by a single mutation in HVS-I, with additional support coming from HVS-II and partial RFLP analysis. The apparently oldest of these clades (transition at np 16327) occurs mainly in central Africa and was probably carried to southern Africa with the Bantu expansion(s). The most frequent clade (transition at np 16320) testiÆes to a pronounced expansion event in the mid-Holocene and seems to be prominent in many Bantu groups from all of Africa. In contrast, one clade (transition at np 16264) is essentially restricted to Atlantic western Africa (including Cabo Verde). We propose a tentative L3e phylogeny that is based on 197 HVS-I sequences. We conclude that haplogroup L3e originated in central or eastern Africa about 46,000 (plus or minus 14,000) years ago, and was a hitchhiker of much later dispersal and local expansion events, with the rise of food production and iron smelting. Enforced migration of African slaves to the Americas translocated L3e mitochondria, the descendants of which in Brazil and the Caribbean still reflect their different regional African ancestries.

PDF file

Wednesday, May 26, 2004

Origin and Diffusion of mtDNA Haplogroup X

A maximum parsimony tree of 21 complete mitochondrial DNA (mtDNA) sequences belonging to haplogroup X and the survey of the haplogroup-associated polymorphisms in 13,589 mtDNAs from Eurasia and Africa revealed that haplogroup X is subdivided into two major branches, here defined as “X1” and “X2.” The first is restricted to the populations of North and East Africa and the Near East, whereas X2 encompasses all X mtDNAs from Europe, western and Central Asia, Siberia, and the great majority of the Near East, as well as some North African samples. Subhaplogroup X1 diversity indicates an early coalescence time, whereas X2 has apparently undergone a more recent population expansion in Eurasia, most likely around or after the last glacial maximum. It is notable that X2 includes the two complete Native American X sequences that constitute the distinctive X2a clade, a clade that lacks close relatives in the entire Old World, including Siberia. The position of X2a in the phylogenetic tree suggests an early split from the other X2 clades, likely at the very beginning of their expansion and spread from the Near East.

PDF file

mtDNA Haplogroup X: An Ancient Link between Europe/Western Asia and North America?

On the basis of comprehensive RFLP analysis, it has been inferred that ª97% of Native American mtDNAs belong to one of four major founding mtDNA lineages, designated haplogroups “A”–“D.” It has been proposed that a fifth mtDNA haplogroup (haplogroup X) represents a minor founding lineage in Native Americans. Unlike haplogroups A–D, haplogroup X is also found at low frequencies in modern European populations. To investigate the origins, diversity, and continental relationships of this haplogroup, we performed mtDNA high-resolution RFLP and complete control region (CR) sequence analysis on 22 putative Native American haplogroup X and 14 putative European haplogroup X mtDNAs. The results identified a consensus haplogroup X motif that characterizes our European and Native American samples. Among Native Americans, haplogroup X appears to be essentially restricted to northern Amerindian groups, including the Ojibwa, the Nuu-Chah-Nulth, the Sioux, and the Yakima, although we also observed this haplogroup in the Na-Dene–speaking Navajo. Median network analysis indicated that European and Native American haplogroup X mtDNAs, although distinct, nevertheless are distantly related to each other. Time estimates for the arrival of X in North America are 12,000–36,000 years ago, depending on the number of assumed founders, thus supporting the conclusion that the peoples harboring haplogroup X were among the original founders of Native American populations. To date, haplogroup X has not been unambiguously identified in Asia, raising the possibility that some Native American founders were of Caucasian ancestry.

PDF file

Brief Communication: Haplogroup X Confirmed in Prehistoric North America

Haplogroup X represents approximately 3% of all modern Native North American mitochondrial lineages. Using RFLP and hypervariable segment I (HVSI) sequence analyses, we identified a prehistoric individual radiocarbon dated to 1,340 plus or minus 40 years BP that is a member of haplogroup X, found near the Columbia River in Vantage, Washington. The presence of haplogroup X in prehistoric North America, along with recent findings of haplogroup X in southern Siberians, confirms the hypothesis that haplogroup X is a founding lineage.

PDF file

Origins and Divergence of the Roma (Gypsies)

The identification of a growing number of novel Mendelian disorders and private mutations in the Roma (Gypsies) points to their unique genetic heritage. Linguistic evidence suggests that they are of diverse Indian origins. Their social structure within Europe resembles that of the jatis of India, where the endogamous group, often defined by profession, is the primary unit. Genetic studies have reported dramatic differences in the frequencies of mutations and neutral polymorphisms in different Romani populations. However, these studies have not resolved ambiguities regarding the origins and relatedness of Romani populations. In this study, we examine the genetic structure of 14 well-defined Romani populations. Y-chromosome and mtDNA markers of different mutability were analyzed in a total of 275 individuals. Asian Y-chromosome haplogroup VI-68, defined by a mutation at the M82 locus, was present in all 14 populations and accounted for 44.8% of Romani Y chromosomes. Asian mtDNA-haplogroup M was also identified in all Romani populations and accounted for 26.5% of female lineages in the sample. Limited diversity within these two haplogroups, measured by the variation at eight short-tandem-repeat loci for the Y chromosome, and sequencing of the HVS1 for the mtDNA are consistent with a small group of founders splitting from a single ethnic population in the Indian subcontinent. Principal-components analysis and analysis of molecular variance indicate that genetic structure in extant endogamous Romani populations has been shaped by genetic drift and differential admixture and correlates with the migrational history of the Roma in Europe. By contrast, social organization and professional group divisions appear to be the product of a more recent restitution of the caste system of India.

PDF file

Patterns of inter- and intra-group genetic diversity in the Vlax Roma as revealed by Y chromosome and mitochondrial DNA lineages

Previous genetic studies, supported by linguistic and historical data, suggest that the European Roma, comprising a large number of socially divergent endogamous groups, may be a complex conglomerate of founder populations. The boundaries and characteristics of such founder populations and their relationship to the currently existing social stratification of the Roma have not been investigated. This study is an attempt to address the issues of common vs independent origins and the history of population fissioning in three Romani groups that are well defined and strictly endogamous relative to each other. According to linguistic classifications, these groups belong to the Vlax Roma, who account for a large proportion of the European Romani population. The analysis of mtDNA sequence variation has shown that a large proportion of maternal lineages are common to the three groups. The study of a set of Y chromosome markers of different mutability has revealed that over 70% of males belong to a single lineage that appears unique to the Roma and presents with closely related microsatellite haplotypes and MSY1 codes. The study unambiguously points to the common origins of the three Vlax groups and the recent nature of the population fissions, and provides preliminary evidence of limited genetic diversity in this young founder population.

PDF file

Monday, May 17, 2004

Phylogenetic Star Contraction Applied to Asian and Papuan mtDNA Evolution

In the past decade, mitochondrial DNA (mtDNA) of 826 representative East Asians and Papuans has been typed by high-resolution (14-enzyme) restriction fragment length polymorphism (RFLP) analysis. Compared with mtDNA control region sequencing, RFLP typing of the complete human mitochondrial DNA generally yields a cleaner phylogeny, the nodes of which can be dated assuming a molecular clock. We present here a novel star contraction algorithm which rigorously identifies starlike nodes (clusters) diagnostic of prehistoric demographic expansions. Applied to the Asian and Papuan data, we date the out-of-Africa migration of the ancestral mtDNA types that founded all Eurasian (including Papuan) lineages at 54,000 years. While the proto-Papuan mtDNA continued expanding at this time along a southern route to Papua New Guinea, the proto-Eurasian mtDNA appears to have drifted genetically and does not show any comparable demographic expansion until 30,000 years ago. By this time, the East Asian, Indian, and European mtDNA pools seem to have separated from each other, as postulated by the weak Garden of Eden model. The east Asian expansion entered America about 25,000 years ago, but was then restricted on both sides of the Pacific to more southerly latitudes during the Last Glacial Maximum around 20,000 years ago, coinciding with a chronological gap in our expansion dates. Repopulation of northern Asian latitudes occurred after the Last Glacial Maximum, obscuring the ancestral Asian gene pool of Amerinds.

PDF file

Maori Origins, Y-Chromosome Haplotypes and Implications for Human History in the Pacific

An assessment of 28 pertinent binary genetic markers on the non-recombining portion of the Y chromosome (NRY) in New Zealand Maori and other relevant populations has revealed a diverse genetic paternal heritage of extant Maori. A maximum parsimony phylogeny was constructed in which nine of the 25 possible binary haplotypes were observed. Although ~40% of the samples have haplotypes of unequivocal European origin, an equivalent number of samples have a single binary haplotype that is also observed in Indonesia and New Guinea, indicative of common indigenous Melanesian ancestry. The balance of the lineages has either typical East Asian signatures or alternative compositions consistent with their affinity to Melanesia or New Guinea. Molecular analysis of mtDNA variation confirms the presence of a single predominant characteristic Southeast Asian (9-bp deletion in the Region V) lineage. The Y-chromosome results support a pattern of complex interrelationships between Southeast Asia, Melanesia, and Polynesia, in contrast to mtDNA and linguistic data, which uphold a rapid and homogeneous Austronesian expansion. The Y-chromosome data highlight a distinctive gender-modulated pattern of differential gene flow in the history of Polynesia.

PDF file

Y-chromosome lineages in Cabo Verde Islands witness the diverse geographic origin of its first male settlers

The Y-chromosome haplogroup composition of the population of the Cabo Verde Archipelago was profiled by using 32 single-nucleotide polymorphism markers and compared with potential source populations from Iberia, west Africa, and the Middle East. According to the traditional view, the major proportion of the founding population of Cabo Verde was of west African ancestry with the addition of a minor fraction of male colonizers from Europe. Unexpectedly, more than half of the paternal lineages (53.5%) of Cabo Verdeans clustered in haplogroups I, J, K, and R1, which are characteristic of populations of Europe and the Middle East, while being absent in the probable west African source population of Guiné-Bissau. Moreover, a high frequency of J* lineages in Cabo Verdeans relates them more closely to populations of the Middle East and probably provides the first genetic evidence of the legacy of the Jews. In addition, the considerable proportion (20.5%) of E3b(xM81) lineages indicates a possible gene flow from the Middle East or northeast Africa, which, at least partly, could be ascribed to the Sephardic Jews. In contrast to the predominance of west African mitochondrial DNA haplotypes in their maternal gene pool, the major west African Y-chromosome lineage E3a was observed only at a frequency of 15.9%. Overall, these results indicate that gene flow from multiple sources and various sex-specific patterns have been important in the formation of the genomic diversity in the Cabo Verde islands.

PDF file

Mitochondrial portrait of the Cabo Verde archipelago: the Senegambian outpost of Atlantic slave trade

In order to study the matrilineal genetic composition in Cabo Verde (Republic of Cape Verde), an archipelago that used to serve as a Portuguese entrepot of the Atlantic slave trade, we have analysed a total of 292 mtDNAs sampled from the seven inhabitated islands for the hypervariable segment I (HVS-I) and some characteristic RFLPs of the coding regions. The different settlement history of the northwestern group of the islands is well reflected in the mtDNA pool. The total Cabo Verde sample clearly displays the characteristic mitochondrial features of the Atlantic fringe of western Africa and testifies to almost no mitochondrial input from the Portuguese colonizers.

PDF file

Ethiopians and Khoisan Share the Deepest Clades of the Human Y-Chromosome Phylogeny

The genetic structure of 126 Ethiopian and 139 Senegalese Y chromosomes was investigated by a hierarchical analysis of 30 diagnostic biallelic markers selected from the worldwide Y-chromosome genealogy. The present study reveals that (1) only the Ethiopians share with the Khoisan the deepest human Y-chromosome clades (the African-specific Groups I and II) but with a repertoire of very different haplotypes; (2) most of the Ethiopians and virtually all the Senegalese belong to Group III, whose precursor is believed to be involved in the first migration out of Africa; and (3) the Ethiopian Y chromosomes that fall into Groups VI, VIII, and IX may be explained by back migrations from Asia. The first observation confirms the ancestral affinity between the Ethiopians and the Khoisan, which has previously been suggested by both archaeological and genetic findings.

PDF file

Genetic evidence for a Paleolithic human population expansion in Africa

Human populations have undergone dramatic expansions in size, but other than the growth associated with agriculture, the dates and magnitudes of those expansions have never been resolved. Here, we introduce two new statistical tests for population expansion, which use variation at a number of unlinked genetic markers to study the demographic histories of natural populations. By analyzing genetic variation in various aboriginal populations from throughout the world, we show highly significant evidence for a major human population expansion in Africa, but no evidence of expansion outside of Africa. The inferred African expansion is estimated to have occurred between 49,000 and 640,000 years ago, certainly before the Neolithic expansions, and probably before the splitting of African and non-African populations. In showing a significant difference between African and non-African populations, our analysis supports the unique role of Africa in human evolutionary history, as has been suggested by most other genetic work. In addition, the missing signal in non-African populations may be the result of a population bottleneck associated with the emergence of these populations from Africa, as postulated in the "Out of Africa" model of modern human origins.

PDF file

Signatures of Population Expansion in Microsatellite Repeat Data

To examine the signature of population expansion on genetic variability at microsatellite loci, we consider a population that evolves according to the time-continuous Moran model, with growing population size and mutations that follow a general asymmetric stepwise mutation model. We present calculations of expected allele-size variance and homozygosity at a locus in such a model for several variants of growth, including stepwise, exponential, and logistic growth. These calculations in particular prove that population bottleneck followed by growth in size causes an imbalance between allele size variance and heterozygosity, characterized by the variance being transiently higher than expected under equilibrium conditions. This effect is, in a sense, analogous to that demonstrated before for the infinite allele model, where the number of alleles transiently increases after a stepwise growth of population. We analyze a set of data on tetranucleotide repeats that reveals the imbalance expected under the assumption of bottleneck followed by population growth in two out of three major racial groups. The imbalance is strongest in Asians, intermediate in Europeans, and absent in Africans. This finding is consistent with previous findings by others concerning the population expansion of modern humans, with the bottleneck event being most ancient in Africans, most recent in Asians, and intermediate in Europeans. Nevertheless, the imbalance index alone cannot reliably estimate the time of initiation of population expansion.

PDF file

Why hunter-gatherer populations do not show signs of Pleistocene demographic expansions

The mitochondrial DNA diversity of 62 human population samples was examined for potential signals of population expansions. Stepwise expansion times were estimated by taking into account heterogeneity of mutation rates among sites. Assuming an mtDNA divergence rate of 33% per million years, most populations show signals of Pleistocene expansions at around 70,000 years (70 KY) ago in Africa and Asia, 55 KY ago in America, and 40 KY ago in Europe and the Middle East, whereas the traces of the oldest expansions are found in East Africa (110 KY ago for the Turkana). The genetic diversity of two groups of populations (most Amerindian populations and present-day hunter-gatherers) cannot be explained by a simple stepwise expansion model. A multivariate analysis of the genetic distances among 61 populations reveals that populations that did not undergo demographic expansions show increased genetic distances from other populations, confirming that the demography of the populations strongly affects observed genetic affinities. The absence of traces of Pleistocene expansions in present-day hunter-gatherers seems best explained by the occurrence of recent bottlenecks in those populations, implying a difference between Pleistocene (approximately 1,800 KY to 10 KY ago) and Holocene (10 KY to present) hunter-gatherers demographies, a difference that occurred after, and probably in response to, the Neolithic expansions of the other populations.

PDF file

Features of Evolution and Expansion of Modern Humans, Inferred from Genomewide Microsatellite Markers

We study data on variation in 52 worldwide populations at 377 autosomal short tandem repeat loci, to infer a demographic history of human populations. Variation at di-, tri-, and tetranucleotide repeat loci is distributed differently, although each class of markers exhibits a decrease of within-population genetic variation in the following order: sub-Saharan Africa, Eurasia, East Asia, Oceania, and America. There is a similar decrease in the frequency of private alleles. With multidimensional scaling, populations belonging to the same major geographic region cluster together, and some regions permit a finer resolution of populations. When a stepwise mutation model is used, a population tree based on TD estimates of divergence time suggests that the branches leading to the present sub-Saharan African populations of hunter-gatherers were the first to diverge from a common ancestral population (~71–142 thousand years ago). The branches corresponding to sub-Saharan African farming populations and those that left Africa diverge next, with subsequent splits of branches for Eurasia, Oceania, East Asia, and America. African hunter-gatherer populations and populations of Oceania and America exhibit no statistically significant signature of growth. The features of population subdivision and growth are discussed in the context of the ancient expansion of modern humans.

PDF file

Genetic Variation Among World Populations: Inferences From 100 Alu Insertion Polymorphisms

We examine the distribution and structure of human genetic diversity for 710 individuals representing 31 populations from Africa, East Asia, Europe, and India using 100 Alu insertion polymorphisms from all 22 autosomes. Alu diversity is highest in Africans (0.349) and lowest in Europeans (0.297). Alu insertion frequency is lowest in Africans (0.463) and higher in Indians (0.544), E. Asians (0.557), and Europeans (0.559). Large genetic distances are observed among African populations and between African and non-African populations. The root of a neighbor-joining network is located closest to the African populations. These findings are consistent with an African origin of modern humans and with a bottleneck effect in the human populations that left Africa to colonize the rest of the world. Genetic distances among all pairs of populations show a significant product-moment correlation with geographic distances (r = 0.69, P < 0.00001). FST, the proportion of genetic diversity attributable to population subdivision is 0.141 for Africans/E. Asians/Europeans, 0.047for E. Asians/Indians/Europeans, and 0.090 for all 31 populations. Resampling analyses show that ~50 Alu polymorphisms are sufficient to obtain accurate and reliable genetic distance estimates. These analyses also demonstrate that markers with higher FST values have greater resolving power and produce more consistent genetic distance estimates.

PDF file

Binary and Microsatellite Polymorphisms of the Y-Chromosome in the Mbenzele Pygmies From the Central African Republic

This study analyzes the variation of six binary polymorphisms and six microsatellites in the Mbenzele Pygmies from the Central African Republic. Five different haplogroups (B2b, E(xE3a), E3a, P and BR(xB2b,DE,P)) were observed, with frequencies ranging from 0.022 (haplogroup P) to 0.609 (haplogroup E3a). A comparison of haplogroup frequencies indicates a close genetic affinity between theMbenzele and the Biaka Pygmies, a finding consistent with the common origin and the geographical proximity of the two populations. The haplogroups P, BR(xB2b,DE,P) and E(xE3a), which are rare in sub-Saharan Africa but common in western Eurasia, were observed with frequencies ranging from 0.022 (haplogroup P) to 0.087 (haplogroup E(xE3a)). Thirty different microsatellite haplotypes were detected, with frequencies ranging from 0.022 to 0.152. The Mbenzele share the highest percent of microsatellite haplotypes with the Biaka Pygmies. Five out seven haplotypes which are shared by the Mbenzele and Biaka Pygmies belong to haplogroup E3a, which suggests that they are of Bantu origin. The plot based on Fst genetic distances calculated using microsatellite data provides a picture of population relationships which is in part congruent and in part complementary to that obtained using haplogroup frequencies. Finally, the Mbenzele and Biaka Pygmies were found to be markedly more genetically similar using Y-chromosomal than autosomal microsatellites. We suggest that this could be due to the higher phylogenetic stability of Y-chromosome and to the effect of the male-biased gene flow during the Bantu expansion.

PDF file

Friday, May 14, 2004

Apparent intrachromosomal exchange on the human Y chromosome explained by population history

The human Y chromosome displays an unusual content of repetitive sequences. Y-chromosomal repeats are potential targets for intrachromosomal recombination, which is thought to be involved in a number of Y-associated defects, such as male infertility. Such rearrangements could potentially be investigated by the use of highly polymorphic DNA markers located within the repeat units, such as microsatellites. Here we analyse the two copies of the Y-chromosomal microsatellite DYS385, which we identified and localized to an ~190 kb duplicated and inverted fragment at Yq11.223. We found a highly significant correlation (r=0.853, P<0.001) and a nonsignificant difference in a 2-test (2=15.45, P>0.05) between the allele frequency distributions at both copies of the Y-STR in a German population sample (n=70). Such nearly identical allele frequency distribution between two copies of a duplicated highly polymorphic microsatellite cannot be explained by the independent mutational process that creates microsatellite alleles. Instead, this might be interpreted as evidence for a reciprocal intrachromosomal exchange process between the duplicated fragments. However, more detailed analyses using additional human populations as well as additional Y chromosome markers revealed that this phenomenon is highly population-specific and disappears completely when Y-STR diversity is analysed in association with two Y-SNP haplogroups. We found that the diversity of the two DYS385 loci (and other Y-STRs) is highly depending on the haplogroup background, and that equal proportions of both haplogroups in the German sample explains the nearly identical allele frequency distributions at the two DYS385 loci. Thus, we demonstrate here that allele frequency distributions at duplicate loci that are suggestive of intrachromosomal recombination can be explained solely by population history.

PDF file

Genetics and the population history of Europe

Analysis of genetic variation among modern individuals is providing insight into prehistoric events. Comparisons of levels and patterns of genetic diversity with the predictions of models based on archeological evidence suggest that the spread of early farmers from the Levant was probably the main episode in the European population history, but that both older and more recent processes have left recognizable traces in the current gene pool.

PDF file

Thursday, May 13, 2004

mtDNA Analysis Reveals a Major Late Paleolithic Population Expansion from Southwestern to Northeastern Europe

mtDNA sequence variation was studied in 419 individuals from nine Eurasian populations, by high-resolution RFLP analysis, and it was followed by sequencing of the control region of a subset of these mtDNAs and a detailed survey of previously published data from numerous other European populations. This analysis revealed that a major Paleolithic population expansion from the “Atlantic zone” (southwestern Europe) occurred 10,000–15,000 years ago, after the Last Glacial Maximum. As an mtDNA marker for this expansion we identified haplogroup V, an autochthonous European haplogroup, which most likely originated in the northern Iberian peninsula or southwestern France at about the time of the Younger Dryas. Its sister haplogroup, H, which is distributed throughout the entire range of Caucasoid populations and which originated in the Near East ~25,000–30,000 years ago, also took part in this expansion, thus rendering it by far the most frequent (40%–60%) haplogroup in western Europe. Subsequent migrations after the Younger Dryas eventually carried those “Atlantic” mtDNAs into central and northern Europe. This scenario, already implied by archaeological records, is given overwhelming support from both the distribution of the autochthonous European Y chromosome type 15, as detected by the probes 49a/f, and the synthetic maps of nuclear data.

PDF file

Frequency Analysis and Allele Map in Favor of the Celtic Origin of the C282Y Mutation of Hemochromatosis

After the main hereditary hemochromatosis mutation C282Y in the HFE gene was described, we report here the C282Y frequencies for various European populations. The aim of this meta-analysis is to compile the Y allele frequencies of the C282Y mutation for 53 European populations, representing a total of 9265 unrelated people representing control samples. The most elevated values are observed in residual Celtic populations in Ireland, in the United Kingdom, and in France, in accordance with the initial hypothesis of Simon et al. (Prog. Med. Genet. 4, 135–168, 1980) concerning a Celtic origin of the hereditary hemochromatosis mutation.

PDF file

Celtic Origin of the C282Y Mutation of Hemochromatosis

The C282Y mutation in the HFE gene is the main mutation causing hemochromatosis, and C282Y frequencies have been reported for various European populations. The aim of this review is to compile the Y allele frequencies of the C282Y mutation for twenty European populations. The most elevated value (6.88%) is observed in residual Celtic populations in UK and France, in accordance to the hypothesis of Simon et al. concerning a Celtic origin of the hereditary hemochromatosis mutation.

PDF file

The Hemochromatosis 845 GA and 187 CG Mutations: Prevalence in Non-Caucasian Populations

Hemochromatosis, the inherited disorder of iron metabolism, leads, if untreated, to progressive iron overload and premature death. The hemochromatosis gene, HFE, recently has been identified, and characterization of this gene has shown that it contains two mutations that result in amino acid substitutionscDNA nucleotides 845 GA (C282Y) and 187 CG (H63D). Although hemochromatosis is common in Caucasians, affecting 1/300 individuals of northern European origin, it has not been recognized in other populations. The present study used PCR and restriction-enzyme digestion to analyze the frequency of the 845 GA and 187 CG mutations in HLA-typed samples from non-Caucasian populations, comprising Australian Aboriginal, Chinese, and Pacific Islanders. Results showed that the 845 GA mutation was present in these populations (allele frequency 0.32%), and, furthermore, it was always seen in conjunction with HLA haplotypes common in Caucasians, suggesting that 845 GA may have been introduced into these populations by Caucasian admixture. 187 CG was present at an allele frequency of 2.68% in the two populations analyzed (Australian Aboriginal and Chinese). In the Australian Aboriginal samples, 187 CG was found to be associated with HLA haplotypes common in Caucasians, suggesting that it was introduced by recent admixture. In the Chinese samples analyzed, 187 CG was present in association with a wide variety of HLA haplotypes, showing this mutation to be widespread and likely to predate the more genetically restricted 845 GA mutation.

PDF file

Maternal legacy of Bretons reveals common features with the extant Scottish mtDNA

Brittany is a peninsula located in western France, between the English Channel and the Atlantic Ocean. This country is peopled by a Celtic minority of 4.5 millions inhabitants, some of them, especially in western Brittany, are still speaking Breton, a Celtic language closely related to the Welsh. Bretons came from Great Britain at the end of the Roman Empire, during the 5th and 6th centuries. Most of them are told to be arrived from Cornwall and from Wales. This migration was important enough to let in Brittany a strong Celtic print in the culture and in the language. We are studying the genetic history of the Bretons. This first work, presented here, has been performed on 121 Breton mtDNAs of Nord-Finistere (Area of Plouescat, Brignogan, Roscoff). We analyse specific features of this Breton population compared to an average French one and its links to the Celtic populations over the channel. Quite interestingly, several unique exact matches between the studied here Breton maternal lineages are in fact between them and those in the Scottish people.

PDF file

Linkage disequilibrium between the four most common cystic fibrosis mutations and microsatellite haplotypes in the Celtic population of Brittany

Microsatellite haplotypes were determined for 117 chromosomes carrying the four most frequent mutations in the cystic fibrosis (CF) gene identified in the Breton population of Celtic origin, as well as for 83 normal chromosomes (noncarriers of a CF mutation). Each of the three non-delta F508 mutations was associated with a single haplotype: 1078deIT with 16-31-13, G55ID with 16-7-17, and W846X with 16-32-13. Although these results suggest identity-by-descent for each mutation, recurrent mutations, although unlikely, could not be completely ruled out. The four most frequent haplotypes on normal chromosomes and the three most frequent haplotypes on delta F508 chromosomes are the same as those found in Ireland, Spain, and Italy. This suggests that some haplotypes, associated or not with the delta F508 mutation, were present in an ancestral population from which all four populations descended.

PDF file

Estimating Scandinavian and Gaelic Ancestry in the Male Settlers of Iceland

We present findings based on a study of Y-chromosome diallelic and microsatellite variation in 181 Icelanders, 233 Scandinavians, and 283 Gaels from Ireland and Scotland. All but one of the Icelandic Y chromosomes belong to haplogroup 1 (41.4%), haplogroup 2 (34.2%), or haplogroup 3 (23.8%). We present phylogenetic networks of Icelandic Y-chromosome variation, using haplotypes constructed from seven diallelic markers and eight microsatellite markers, and we propose two new clades. We also report, for the first time, the phylogenetic context of the microsatellite marker DYS385 in Europe. A comparison of haplotypes based on six diallelic loci and five microsatellite loci indicates that some Icelandic haplogroup-1 chromosomes are likely to have a Gaelic origin, whereas for most Icelandic haplogroup-2 and -3 chromosomes, a Scandinavian origin is probable. The data suggest that 20%-25% of Icelandic founding males had Gaelic ancestry, with the remainder having Norse ancestry. The closer relationship with the Scandinavian Y-chromosome pool is supported by the results of analyses of genetic distances and lineage sharing. These findings contrast with results based on mtDNA data, which indicate closer matrilineal links with populations of the British Isles. This supports the model, put forward by some historians, that the majority of females in the Icelandic founding population had Gaelic ancestry, whereas the majority of males had Scandinavian ancestry.

PDF file

mtDNA and the Islands of the North Atlantic: Estimating the Proportions of Norse and Gaelic Ancestry

A total of 1,664 new mtDNA control-region sequences were analyzed in order to estimate Gaelic and Scandinavian matrilineal ancestry in the populations of Iceland, Orkney, the Western Isles, and the Isle of Skye and to investigate other aspects of their genetic history. A relative excess of private lineages in the Icelanders is indicative of isolation, whereas the scarcity of private lineages in Scottish island populations may be explained by recent gene flow and population decline. Differences in the frequencies of lineage clusters are observed between the Scandinavian and the Gaelic source mtDNA pools, and, on a continent-wide basis, such differences between populations seem to be associated with geography. A multidimensional scaling analysis of genetic distances, based on mtDNA lineage cluster frequencies, groups the North Atlantic islanders with the Gaelic and the Scandinavian populations, whereas populations from the central, southern, and Baltic regions of Europe are arranged in clusters in broad agreement with their geographic locations. This pattern is highly significant, according to a Mantel correlation between genetic and geographic distances (r=.716). Admixture analyses indicate that the ancestral contributions of mtDNA lineages from Scandinavia to the populations of Iceland, Orkney, the Western Isles, and the Isle of Skye are 37.5%, 35.5%, 11.5%, and 12.5%, respectively.

PDF file

mtDNA and the Origin of the Icelanders: Deciphering Signals of Recent Population History

Previous attempts to investigate the origin of the Icelanders have provided estimates of ancestry ranging from a 98% British Isles contribution to an 86% Scandinavian contribution. We generated mitochondrial sequence data for 401 Icelandic individuals and compared these data with >2,500 other European sequences from published sources, to determine the probable origins of women who contributed to Iceland's settlement. Although the mean number of base-pair differences is high in the Icelandic sequences and they are widely distributed in the overall European mtDNA phylogeny, we find a smaller number of distinct mitochondrial lineages, compared with most other European populations. The frequencies of a number of mtDNA lineages in the Icelanders deviate noticeably from those in neighboring populations, suggesting that founder effects and genetic drift may have had a considerable influence on the Icelandic gene pool. This is in accordance with available demographic evidence about Icelandic population history. A comparison with published mtDNA lineages from European populations indicates that, whereas most founding females probably originated from Scandinavia and the British Isles, lesser contributions from other populations may also have taken place. We present a highly resolved phylogenetic network for the Icelandic data, identifying a number of previously unreported mtDNA lineage clusters and providing a detailed depiction of the evolutionary relationships between European mtDNA clusters. Our findings indicate that European populations contain a large number of closely related mitochondrial lineages, many of which have not yet been sampled in the current comparative data set. Consequently, substantial increases in sample sizes that use mtDNA data will be needed to obtain valid estimates of the diverse ancestral mixtures that ultimately gave rise to contemporary populations.

PDF file

A Populationwide Coalescent Analysis of Icelandic Matrilineal and Patrilineal Genealogies: Evidence for a Faster Evolutionary Rate of mtDNA Lineages than Y Chromosomes

Historical inferences from genetic data increasingly depend on assumptions about the genealogical process that shapes the frequencies of alleles over time. Yet little is known about the structure of human genealogies over long periods of time and how they depart from expectations of standard demographic models, such as that attributed to Wright and Fisher. To obtain such information and to examine the recent evolutionary history of mtDNA and Y-chromosome haplotypes in the Icelandic gene pool, we traced the matrilineal and patrilineal ancestry of all 131,060 Icelanders born after 1972 back to two cohorts of ancestors, one born between 1848 and 1892 and the other between 1798 and 1742. This populationwide coalescent analysis of Icelandic genealogies revealed highly positively skewed distributions of descendants to ancestors, with the vast majority of potential ancestors contributing one or no descendants and a minority of ancestors contributing large numbers of descendants. The expansion and loss of matrilines and patrilines has caused considerable fluctuation in the frequencies of mtDNA and Y-chromosome haplotypes, despite a rapid population expansion in Iceland during the past 300 years. Contrary to a widespread assumption, the rate of evolution caused by this lineage-sorting process was markedly faster in matrilines (mtDNA) than in patrilines (Y chromosomes). The primary cause is a 10% shorter matrilineal generation interval. Variance in the number of offspring produced within each generation was not an important differentiating factor.We observed an intergenerational correlation in offspring number and in the length of generation intervals in the matrilineal and patrilineal genealogies, which was stronger in matrilines and thus contributes to their faster evolutionary rate. These findings may have implications for coalescent date estimates based on mtDNA and Y chromosomes.

PDF file

The Western and Eastern Roots of the Saami—the Story of Genetic “Outliers” Told by Mitochondrial DNA and Y Chromosomes

The Saami are regarded as extreme genetic outliers among European populations. In this study, a high-resolution phylogenetic analysis of Saami genetic heritage was undertaken in a comprehensive context, through use of maternally inherited mitochondrial DNA (mtDNA) and paternally inherited Y-chromosomal variation. DNA variants present in the Saami were compared with those found in Europe and Siberia, through use of both new and previously published data from 445 Saami and 17,096 western Eurasian and Siberian mtDNA samples, as well as 127 Saami and 2,840 western Eurasian and Siberian Y-chromosome samples. It was shown that the “Saami motif” variant of mtDNA haplogroup U5b is present in a large area outside Scandinavia. A detailed phylogeographic analysis of one of the predominant Saami mtDNA haplogroups, U5b1b, which also includes the lineages of the “Saami motif,” was undertaken in 31 populations. The results indicate that the origin of U5b1b, as for the other predominant Saami haplogroup, V, is most likely in western, rather than eastern, Europe. Furthermore, an additional haplogroup (H1) spread among the Saami was virtually absent in 781 Samoyed and Ob-Ugric Siberians but was present in western and central European populations. The Y-chromosomal variety in the Saami is also consistent with their European ancestry. It suggests that the large genetic separation of the Saami from other Europeans is best explained by assuming that the Saami are descendants of a narrow, distinctive subset of Europeans. In particular, no evidence of a significant directional gene flow from extant aboriginal Siberian populations into the haploid gene pools of the Saami was found.

PDF file

Archaeogenetics of Finno-Ugric speaking populations

In our third paper of this series (see Villems et al. 1998; Rootsi et al. 2000) we continue our quest for the genetic origin of Finno-Ugric speaking people and extend our previous analysis of patrilinearly (via Y chromosome) and matrilinearly (via mitochondrial DNA) inherited genes in the Eurasian gene pool of humans. We discuss new data of others as well as ourselves about the westem Eurasian populations and, in particular, those living in Volga basin and the southern Ural region. The conclusions we reach strengthen further previous ideas about a common Palaeolithic mtDNA pool of Europeans, extending to the Ural Mountains. A sharp cline becomes apparent in the southern Ural - western Kazakhstan area, suggesting a predominantly western Eurasian substratum in the European Turkic-speaking populations such as Volga Tatars and Chuvashis, whereas maternal lineages of their immediate neighbors - Bashkirs and Kazakhs - are already largely of an eastern Eurasian origin. We also portrait here the frequency pattern of the Y-chromosomal lineage clusters of 4 Finno-Ugric populations and of 7 from neighboring areas, to reveal both common as well as specific features in the paternal genetic background of the characterized populations.

PDF file

The Concepts of Richard Indreko About the Origin of the Finno-Ugric Speakers and the Population Genetics of the Extant North-East European Populations

Archaeologists define their findings in terms of cultures and industries, linguists operate with languages, and the basic unit in biological anthropology is population. Intermarriages of these three systems have raised, and are still doing so, fascinatingly controversial speculations. In the current paper our intention is to discuss the accumulating data of population genetics in a specific context: in the light of scenarios of Richard Indreko, suggested in his half a century old paper. Our approach is to couple the genetic evidence (mitochondrial DNA and Y chromosome data) of Finno-Ugric speaking populations with this archaeological vision.

PDF file

Y-Chromosomal SNPs in Finno–Ugric-Speaking Populations Analyzed by Minisequencing on Microarrays

An increasing number of single nucleotide polymorphisms (SNPs) on the Y chromosome are being identified. To utilize the full potential of the SNP markers in population genetic studies, new genotyping methods with high throughput are required. We describe a microarray system based on the minisequencing single nucleotide primer extension principle for multiplex genotyping of Y-chromosomal SNP markers. The system was applied for screening a panel of 25 Y-chromosomal SNPs in a unique collection of samples representing five Finno–Ugric populations. The specific minisequencing reaction provides 5-fold to infinite discrimination between the Y-chromosomal genotypes, and the microarray format of the system allows parallel and simultaneous analysis of large numbers of SNPs and samples. In addition to the SNP markers, five Y-chromosomal microsatellite loci were typed. Altogether 10,000 genotypes were generated to assess the genetic diversity in these population samples. Six of the 25 SNP markers (M9, Tat, SRY10831, M17, M12, 92R7) were polymorphic in the analyzed populations, yielding six distinct SNP haplotypes. The microsatellite data were used to study the genetic structure of two major SNP haplotypes in the Finns and the Saami in more detail. We found that the most common haplotypes are shared between the Finns and the Saami, and that the SNP haplotypes show regional differences within the Finns and the Saami, which supports the hypothesis of two separate settlement waves to Finland.

PDF file

On the Phylogeographic Context of Sex-Specific Genetic Markers of Finno-Ugric Populations

Here we extend our earlier analysis of the sex-determined, uni-parentally inherited genetic systems of Finno-Ugric and other populations. In particular, we specify phylogeography of a unique "Nordic" variant of Y chromosomes (the Tat C allele; haplogroup 16 in some of the nomenclatures) by showing that it is virtually absent in all Slavic populations studied by us (Poles, Slovaks, Czechs and Croats), except in Russians. Furthermore, we show that Tat C is absent in Hungarians, but well present among Latvians and Lithuanians. We discuss these findings in terms of the demographic history of the Nordic people. We also present some new data about phylogeography of maternally inherited mitochondrial DNA (mtDNA) variation in order to show that despite the basic uniformity of the Western Eurasian mtDNA gene pool, a more detailed analysis starts to reveal patterns of variations which allow to distinguish between the common founders of the maternal lineages of Caucasoids and between the subsequent radiations of these lineages. Many of these phylogeographically clustered variations are of considerable interest in the reconstruction of ancient demographic movements in Europe and in Western Eurasia in general.

PDF file

Reconstruction of Maternal lineages of Finno-Ugric speaking people and some remarks on their Paternal inheritance

Analysis of maternal and paternal lineages of Estonians and other North European Finno-Ugric speaking people reveal their close genetic relatedness. This conclusion is also true for Saami, although genetic drift perhaps does not allow to see it at the first glance. Maternal lineages of Finno-Ugrians are predominantly a subset of these found all over Europe. Among paternal lineages an intriguing link with some Siberian populations was suggested recently by others. Our analysis supports an explanation that a particular mutation under discussion arose in proto-Finno-Ugrians long ago and only later spread eastward.

PDF file

Diversity of Mitochondrial DNA Haplogroups in Ethnic Populations of the Volga–Ural Region

The mtDNA polymorphism was analyzed in eight ethnic groups (N= 979) of the Volga–Ural region. Most mtDNA variants belonged to haplogroups H, U, T, J, W, I, R, and N1 characteristic of West Eurasian populations. The most frequent were haplogroups H (12–42%) and U (18–44%). East Eurasian mtDNA types (A, B, Y, F, M, N9) were also observed. Genetic diversity was higher in Turkic than in Finno-Ugric populations. The frequency of mtDNA types characteristic of Siberian and Central Asian populations substantially increased in the ethnic groups living closer to the Urals, a boundary between Europe and Asia. Geographic distances, rather than linguistic barriers, were assumed to play the major role in distribution of mtDNA types in the Volga–Ural region. Thus, as concerns the maternal lineage, the Finno-Ugric populations of the region proved to be more similar to their Turkic neighbors rather than to linguistically related Balto-Finnish ethnic groups.

PDF file

Traces of Early Eurasians in the Mansi of Northwest Siberia Revealed by Mitochondrial DNA Analysis

The mitochondrial DNA (mtDNA) of 98 Mansi, an ancient group (formerly known as “Vogul”) of Uralic-speaking fishers and hunters on the eastern slope of the northern Ural Mountains, were analyzed for sequence variants by restriction fragment–length polymorphism analysis, control-region sequencing, and sequencing of additional informative sites in the coding region. Although 63.3% of the mtDNA detected in the Mansi falls into western Eurasian lineages (e.g., haplogroups UK, TJ, and HV), the remaining 36.7% encompass a subset of eastern Eurasian lineages (e.g., haplogroups A, C, D, F, G, and M). Among the western Eurasian lineages, subhaplogroup U4 was found at a remarkable frequency of 16.3%, along with lineages U5, U7, and J2. This suggests that the aboriginal populations residing immediately to the east of the Ural Mountains may encompass remnants of the early Upper Paleolithic expansion from the Middle East/southeastern Europe. The added presence of eastern Eurasian mtDNA lineages in the Mansi introduces the possibilities that proto-Eurasians encompassed a range of macrohaplogroup M and N lineages that subsequently became geographically distributed and that the Paleolithic expansion may have reached this part of Siberia before it split into western and eastern human groups.

PDF file

Molecular Genetic Diversity of Indigenous Siberians: Implications for Ancient DNA Studies of Cis-Baikal Archeological Populations

Over the past several years, researchers have conducted a number of genetic studies of populations from central and southeastern Siberia because of their purported role in the peopling of the Americas. Molecular evidence suggests that ancestral Native American populations may have emerged from this region of northern Asia, as several maternally- and paternally-inherited genetic lineages present in both Siberia and the Americas appear to have evolved there. Recent work has also revealed the presence of both Eurasian and Asian genetic lineages in modern populations from the same area of Siberia, a pattern that probably reflects a complex history of population movements and interactions since the Paleolithic. This paper provides an overview of molecular genetic data from Siberian populations, and explores their implications for the ancient DNA analysis of archeological populations from the Cis-Baikal region.

PDF file

Ancestral Asian Source(s) of New World Y-Chromosome Founder Haplotypes

Haplotypes constructed from Y-chromosome markers were used to trace the origins of Native Americans. Our sample consisted of 2,198 males from 60 global populations, including 19 Native American and 15 indigenous North Asian groups. A set of 12 biallelic polymorphisms gave rise to 14 unique Y-chromosome haplotypes that were unevenly distributed among the populations. Combining multiallelic variation at two Y-linked microsatellites (DYS19 and DXYS156Y) with the unique haplotypes results in a total of 95 combination haplotypes. Contra previous findings based on Y- chromosome data, our new results suggest the possibility of more than one Native American paternal founder haplotype. We postulate that, of the nine unique haplotypes found in Native Americans, haplotypes 1C and 1F are the best candidates for major New World founder haplotypes, whereas haplotypes 1B, 1I, and 1U may either be founder haplotypes and/or have arrived in the New World via recent admixture. Two of the other four haplotypes (YAP+ haplotypes 4 and 5) are probably present because of post-Columbian admixture, whereas haplotype 1G may have originated in the New World, and the Old World source of the final New World haplotype (1D) remains unresolved. The contrasting distribution patterns of the two major candidate founder haplotypes in Asia and the New World, as well as the results of a nested cladistic analysis, suggest the possibility of more than one paternal migration from the general region of Lake Baikal to the Americas.

PDF file

Mitochondrial DNA Variation in Koryaks and Itel’men: Population Replacement in the Okhotsk Sea–Bering Sea Region During the Neolithic

In this study, we analyzed the mitochondrial DNA (mtDNA) variation in 202 individuals representing one Itel’men and three Koryak populations from different parts of the Kamchatka peninsula. All mtDNAs were subjected to high resolution restriction (RFLP) analysis and control region (CR) sequencing, and the resulting data were combined with those available for other Siberian and east Asian populations and subjected to statistical and phylogenetic analysis. Together, the Koryaks and Itel’men were found to have mtDNAs belonging to three (A, C, and D) of the four major haplotype groups (haplogroups) observed in Siberian and Native American populations (A–D). In addition, they exhibited mtDNAs belonging to haplogroups G, Y, and Z, which were formerly called ‘‘Other’’ mtDNAs. While Kamchatka harbored the highest frequencies of haplogroup G mtDNAs, which were widely distributed in eastern Siberian and adjacent east Asian populations, the distribution of haplogroup Y was restricted within a relatively small area and pointed to the lower Amur River–Sakhalin Island region as its place of origin. In contrast, the pattern of distribution and the origin of haplogroup Z mtDNAs remained unclear. Furthermore, phylogenetic and statistical analyses showed that Koryaks and Itel’men had stronger genetic affinities with eastern Siberian/east Asian populations than to those of the north Pacific Rim. These results were consistent with colonization events associated with the relatively recent immigration to Kamchatka of new tribes from the Siberian mainland region, although remnants of ancient Beringian populations were still evident in the Koryak and Itel’men gene pools.

PDF file

mtDNA Diversity in Chukchi and Siberian Eskimos: Implications for the Genetic History of Ancient Beringia and the Peopling of the New World

The mtDNAs of 145 individuals representing the aboriginal populations of Chukotka—the Chukchi and Siberian Eskimos—were subjected to RFLP analysis and control-region sequencing. This analysis showed that the core of the genetic makeup of the Chukchi and Siberian Eskimos consisted of three (A, C, and D) of the four primary mtDNA haplotype groups (haplogroups) (A–D) observed in Native Americans, with haplogroup A being the most prevalent in both Chukotkan populations. Two unique haplotypes belonging to haplogroup G (formerly called “other” mtDNAs) were also observed in a few Chukchi, and these have apparently been acquired through gene flow from adjacent Kamchatka, where haplogroup G is prevalent in the Koryak and Itel’men. In addition, a 16111C->T transition appears to delineate an “American” enclave of haplogroup A mtDNAs in northeastern Siberia, whereas the 16192C->T transition demarcates a “northern Pacific Rim” cluster within this haplogroup. Furthermore, the sequence-divergence estimates for haplogroups A, C, and D of Siberian and Native American populations indicate that the earliest inhabitants of Beringia possessed a limited number of founding mtDNA haplotypes and that the first humans expanded into the New World ~34,000 years before present (YBP). Subsequent migration 16,000–13,000 YBP apparently brought a restricted number of haplogroup B haplotypes to the Americas. For millennia, Beringia may have been the repository of the respective founding sequences that selectively penetrated into northern North America from western Alaska.

PDF file

Wednesday, May 12, 2004

The evolution and population genetics of the ALDH2 locus: random genetic drift, selection, and low levels of recombination

The catalytic deficiency of human aldehyde dehydrogenase 2 (ALDH2) is caused by a nucleotide substitution (G1510A; Glu487Lys) in exon 12 of the ALDH2 locus. This SNP, and four non-coding SNPs, including one in the promoter, span 40 kb of ALDH2; these and one downstream STRP have been tested in 37 worldwide populations. Only four major SNP-defined haplotypes account for almost all chromosomes in all populations. A fifth haplotype harbours the functional variant and is only found in East Asians. Though the SNPs showed virtually no historic recombination, LD values are quite variable because of varying haplotype frequencies, demonstrating that LD is a statistical abstraction and not a fundamental aspect of the genome, and is not a function solely of recombination. Among populations, different sets of tagging SNPs, sometimes not overlapping, can be required to identify the common haplotypes. Thus, solely because haplotype frequencies vary, there is no common minimum set of tagging SNPs globally applicable. The Fst values of the promoter region SNP and the functional SNP were about two S.D. above the mean for a reference distribution of 117 autosomal biallelic markers. These high Fst values may indicate selection has operated at these or very tightly linked sites.

PDF file

African Origin of Modern Humans in East Asia: A Tale of 12,000 Y Chromosomes

To test the hypotheses of modern human origin in East Asia, we sampled 12,127 male individuals from 163 populations and typed for three Y chromosome biallelic markers (YAP, M89, and M130). All the individuals carried a mutation at one of the three sites. These three mutations (YAP+, M89T, and M130T) coalesce to another mutation (M168T), which originated in Africa about 35,000 to 89,000 years ago. Therefore, the data do not support even a minimal in situ hominid contribution in the origin of anatomically modern humans in East Asia.

PDF file

Y-Chromosome Evidence for a Northward Migration of Modern Humans into Eastern Asia during the Last Ice Age

The timing and nature of the arrival and the subsequent expansion of modern humans into eastern Asia remains controversial. Using Y-chromosome biallelic markers, we investigated the ancient human-migration patterns in eastern Asia. Our data indicate that southern populations in eastern Asia are much more polymorphic than northern populations, which have only a subset of the southern haplotypes. This pattern indicates that the first settlement of modern humans in eastern Asia occurred in mainland Southeast Asia during the last Ice Age, coinciding with the absence of human fossils in eastern Asia, 50,000-100,000 years ago. After the initial peopling, a great northward migration extended into northern China and Siberia.

PDF file

Reconstructing the Evolutionary History of China: A Caveat About Inferences Drawn from Ancient DNA

The decipherment of the meager information provided by short fragments of ancient mitochondrial DNA (mtDNA) is notoriously difficult but is regarded as a most promising way toward reconstructing the past from the genetic perspective. By haplogroup-specific hypervariable segment (HVS) motif search and matching or near-matching with available modern data sets, most of the ancient mtDNAs can be tentatively assigned to haplogroups, which are often subcontinent specific. Further typing for mtDNA haplogroup-diagnostic coding region polymorphisms, however, is indispensable for establishing the geographic/genetic affinities of ancient samples with less ambiguity. In the present study, we sequenced a fragment (~982 bp) of the mtDNA control region in 76 Han individuals from Taian, Shandong, China, and we combined these data with previously reported samples from Zibo and Qingdao, Shandong. The reanalysis of two previously published ancient mtDNA population data sets from Linzi (same province) then indicates that the ancient populations had features in common with the modern populations from south China rather than any specific affinity to the European mtDNA pool. Our results highlight that ancient mtDNA data obtained under different sampling schemes and subject to potential contamination can easily create the impression of drastic spatiotemporal changes in the genetic structure of a regional population during the past few thousand years if inappropriate methods of data analysis are employed.

PDF file

A polymorphic L1 retroposon insertion in the centromere of the human Y chromosome

We have identified a novel polymorphic L1 retroposon insertion, designated LY1, in the centromeric alphoid array of the human Y chromosome. The element belongs to the transpositionally active Ta subset and its presence is compatible with normal centromere function. It was found at highest frequency in China, where it accounts for 23% of the Han sample, and was present at low frequencies in the surrounding areas, but was not found at all outside Asia. Chromosomes carrying LY1 show considerable microsatellite diversity, suggesting an ancient origin for the lineage at approximately 10 000 years ago (with wide confidence limits), but only limited subsequent migration.

PDF file

Y-chromosome evidence for no independent origin of modern human in China

East Asia is one of the few regions in the world where a large number of human fossils have been unearthed. The continuity of hominid fossils in East Asia, particularly in China has been presented as strong evidence supporting an independent origin of modern humans in this area. To search for such evidence of a possible independent origin of modern humans in China, a total of 9988 male individuals were sampled across China. Three Y-chromosome biallelic markers (M89, M130 and YAP), which were located at the non-re-combinant region of Y-chromosome, were typed among the samples. Our result showed that all the individuals carry a mutation at one of the three loci. The three mutations (M89T, M130T, YAP+) coalesce to another mutation (M168T), which was originally derived from Africa about 31000 to 79000 years ago. In other words, all Y-chromosome samples from China, with no exception, were originally derived from a lineage of African origin. Hence, we conclude that even a very minor contribution of in situ hominid origin in China cannot be supported by the Y-chromosome evidence.

PDF file

The Emerging Limbs and Twigs of the East Asian mtDNA Tree

We determine the phylogenetic backbone of the East Asian mtDNA tree by using published complete mtDNA sequences and assessing both coding and control region variation in 69 Han individuals from southern China. This approach assists in the interpretation of published mtDNA data on East Asians based on either control region sequencing or restriction fragment length polymorphism (RFLP) typing. Our results confirm that the East Asian mtDNA pool is locally region-specific and completely covered by the two superhaplogroups M and N. The phylogenetic partitioning based on complete mtDNA sequences corroborates existing RFLP-based classification of Asian mtDNA types and supports the distinction between northern and southern populations. We describe new haplogroups M7, M8, M9, N9, and R9 and demonstrate by way of example that hierarchically subdividing the major branches of the mtDNA tree aids in recognizing the settlement processes of any particular region in appropriate time scale. This is illustrated by the characteristically southern distribution of haplogroup M7 in East Asia, whereas its daughter-groups, M7a and M7b2, specific for Japanese and Korean populations, testify to a presumably (pre-)Jomon contribution to the modern mtDNA pool of Japan.

PDF file

Phylogeny of East Asian Mitochondrial DNA Lineages Inferred from Complete Sequences

The now-emerging mitochondrial DNA (mtDNA) population genomics provides information for reconstructing a well-resolved mtDNA phylogeny and for discerning the phylogenetic status of the subcontinentally specific haplogroups. Although several major East Asian mtDNA haplogroups have been identified in studies elsewhere, some of the most basal haplogroups, as well as numerous minor subhaplogroups, were not yet determined or fully characterized. To fill the lacunae, we selected 48 mtDNAs from >2,000 samples across China for complete sequencing that cover virtually all (sub)haplogroups discernible to date in East Asia. This East Asian mtDNA phylogeny can henceforth serve as a solid basis for phylogeographic analyses of mtDNAs, as well as for studies of mitochondrial diseases in East and Southeast Asia.

PDF file

Paternal Population History of East Asia: Sources, Patterns, and Microevolutionary Processes

Asia has served as a focal point for human migration during much of the Late Pleistocene and Holocene. Clarification of East Asia’s role as a source and/or transit point for human dispersals requires that this region’s own settlement history be understood. To this end, we examined variation at 52 polymorphic sites on the nonrecombining portion of the Y chromosome (NRY) in 1,383 unrelated males, representing 25 populations from southern East Asia (SEAS), northern East Asia (NEAS), and central Asia (CAS). The polymorphisms defined 45 global haplogroups, 28 of which were present in these three regions. Although heterozygosity levels were similar in all three regions, the average pairwise difference among haplogroups was noticeably smaller in SEAS. Multidimensional scaling analysis indicated a general separation of SEAS versus NEAS and CAS populations, and analysis of molecular variance produced very different values of ST in NEAS and SEAS populations. In spatial autocorrelation analyses, the overall correlogram exhibited a clinal pattern; however, the NEAS populations showed evidence of both isolation by distance and ancient clines, whereas there was no evidence of structure in SEAS populations. Nested cladistic analysis demonstrated that population history events and ongoing demographic processes both contributed to the contrasting patterns of NRY variation in NEAS and SEAS. We conclude that the peopling of East Asia was more complex than earlier models had proposed—that is, a multilayered, multidirectional, and multidisciplinary framework is necessary. For instance, in addition to the previously recognized genetic and dental dispersal signals from SEAS to NEAS populations, CAS has made a significant contribution to the contemporary gene pool of NEAS, and the Sino-Tibetan expansion has left traces of a genetic trail from northern to southern China.

PDF file

Mitochondrial DNA Analysis of Mongolian Populations and Implications for the Origin of New World Founders

High levels of mitochondrial DNA (mtDNA) diversity were determined for Mongolian populations, represented by the Mongol-speaking Khalkha and Dariganga. Although 103 samples were collected across Mongolia, low levels of genetic substructuring were detected, reflecting the nomadic lifestyle and relatively recent ethnic differentiation of Mongolian populations. mtDNA control region I sequence and seven additional mtDNA polymorphisms were assayed to allow extensive comparison with previous human population studies. Based on a comparative analysis, we propose that indigenous populations in east Central Asia represent the closest genetic link between Old and New World populations. Utilizing restriction/deletion polymorphisms, Mongolian populations were found to carry all four New World founding haplogroups as defined by WALLACE and coworkers. The ubiquitous presence of the four New World haplogroups in the Americas but narrow distribution across Asia weakens support for GREENBERG and coworkers’ theory of New World colonization via three independent migrations. The statistical and geographic scarcity of New World haplogroups in Asia makes it improbable that the same four haplotypes would be drawn from one geographic region three independent times. Instead, it is likely that founder effects manifest throughout Asia and the Americas are responsible for differences in mtDNA haplotype frequencies observed in these regions.

PDF file