Genetic Chaos

Wednesday, May 12, 2004

Mitochondrial DNA Analysis of Mongolian Populations and Implications for the Origin of New World Founders

High levels of mitochondrial DNA (mtDNA) diversity were determined for Mongolian populations, represented by the Mongol-speaking Khalkha and Dariganga. Although 103 samples were collected across Mongolia, low levels of genetic substructuring were detected, reflecting the nomadic lifestyle and relatively recent ethnic differentiation of Mongolian populations. mtDNA control region I sequence and seven additional mtDNA polymorphisms were assayed to allow extensive comparison with previous human population studies. Based on a comparative analysis, we propose that indigenous populations in east Central Asia represent the closest genetic link between Old and New World populations. Utilizing restriction/deletion polymorphisms, Mongolian populations were found to carry all four New World founding haplogroups as defined by WALLACE and coworkers. The ubiquitous presence of the four New World haplogroups in the Americas but narrow distribution across Asia weakens support for GREENBERG and coworkers’ theory of New World colonization via three independent migrations. The statistical and geographic scarcity of New World haplogroups in Asia makes it improbable that the same four haplotypes would be drawn from one geographic region three independent times. Instead, it is likely that founder effects manifest throughout Asia and the Americas are responsible for differences in mtDNA haplotype frequencies observed in these regions.

PDF file