A Predominantly Indigenous Paternal Heritage for the Austronesian-Speaking Peoples of Insular Southeast Asia and Oceania
Modern humans reached Southeast Asia and Oceania in one of the first dispersals out of Africa. The resulting temporal overlap of modern and archaic humans—and the apparent morphological continuity between them—has led to claims of gene flow between Homo sapiens and H. erectus. Much more recently, an agricultural technology from mainland Asia spread into the region, possibly in association with Austronesian languages. Using detailed genealogical study of Y chromosome variation, we show that the majority of current Austronesian speakers trace their paternal heritage to Pleistocene settlers in the region, as opposed to more-recent agricultural immigrants. A fraction of the paternal heritage, however, appears to be associated with more-recent immigrants from northern populations. We also show that the northern Neolithic component is very unevenly dispersed through the region, with a higher contribution in Southeast Asia and a nearly complete absence in Melanesia. Contrary to claims of gene flow (under regional continuity) between H. erectus and H. sapiens, we found no ancestral Y chromosome lineages in a set of 1,209 samples. The finding excludes the possibility that early hominids contributed significantly to the paternal heritage of the region.
PDF file
Genetic Evidence for the Proto-Austronesian Homeland in Asia: mtDNA and Nuclear DNA Variation in Taiwanese Aboriginal Tribes
Previous studies of mtDNA variation in indigenous Taiwanese populations have suggested that they held an ancestral position in the spread of mtDNAs throughout Southeast Asia and Oceania (Melton et al. 1995; Sykes et al. 1995), but the question of an absolute proto-Austronesian homeland remains. To search for Asian roots for indigenous Taiwanese populations, 28 mtDNAs representative of variation in four tribal groups (Ami, Atayal, Bunun, and Paiwan) were sequenced and were compared with each other and with mtDNAs from 25 other populations from Asia and Oceania. In addition, eight polymorphic Alu insertion loci were analyzed, to determine if the pattern of mtDNA variation is concordant with nuclear DNA variation. Tribal groups shared considerable mtDNA sequence identity (P>.90), where gene flow is believed to have been low, arguing for a common source or sources for the tribes. mtDNAs with a 9-bp deletion have considerable mainland-Asian diversity and have spread to Southeast Asia and Oceania through a Taiwanese bottleneck. Only four Taiwanese mtDNA haplotypes without the 9-bp deletion were shared with any other populations, but these shared types were widely dispersed geographically throughout mainland Asia. Phylogenetic and principal-component analyses of Alu loci were concordant with conclusions from the mtDNA analyses; overall, the results suggest that the Taiwanese have temporally deep roots, probably in central or south China, and have been isolated from other Asian populations in recent history.
PDF file
Y Chromosomal Evidence for the Origins of Oceanic-Speaking Peoples
A number of alternative hypotheses seek to explain the origins of the three groups of Pacific populations—Melanesians, Micronesians, and Polynesians—who speak languages belonging to the Oceanic subfamily of Austronesian languages. To test these various hypotheses at the genetic level, we assayed diversity within the nonrecombining portion of the Y chromosome, which contains within it a relatively simple record of the human past and represents the most informative haplotypic system in the human genome. High-resolution haplotypes combining binary, microsatellite, and minisatellite markers were generated for 390 Y chromosomes from 17 Austronesian-speaking populations in southeast Asia and the Pacific. Nineteen paternal lineages were defined and a Bayesian analysis of coalescent simulations was performed upon the microsatellite diversity within lineages to provide a temporal aspect to their geographical distribution. The ages and distributions of these lineages provide little support for the dominant archeo-linguistic model of the origins of Oceanic populations that suggests that these peoples represent the Eastern fringe of an agriculturally driven expansion initiated in southeast China and Taiwan. Rather, most Micronesian and Polynesian Y chromosomes appear to originate from different source populations within Melanesia and Eastern Indonesia. The Polynesian outlier, Kapingamarangi, is demonstrated to be an admixed Micronesian/Polynesian population. Furthermore, it is demonstrated that a geographical rather than linguistic classification of Oceanic populations best accounts for their extant Y chromosomal diversity.
PDF file
Fast trains, slow boats, and the ancestry of the Polynesian islanders
PDF file
Modern humans reached Southeast Asia and Oceania in one of the first dispersals out of Africa. The resulting temporal overlap of modern and archaic humans—and the apparent morphological continuity between them—has led to claims of gene flow between Homo sapiens and H. erectus. Much more recently, an agricultural technology from mainland Asia spread into the region, possibly in association with Austronesian languages. Using detailed genealogical study of Y chromosome variation, we show that the majority of current Austronesian speakers trace their paternal heritage to Pleistocene settlers in the region, as opposed to more-recent agricultural immigrants. A fraction of the paternal heritage, however, appears to be associated with more-recent immigrants from northern populations. We also show that the northern Neolithic component is very unevenly dispersed through the region, with a higher contribution in Southeast Asia and a nearly complete absence in Melanesia. Contrary to claims of gene flow (under regional continuity) between H. erectus and H. sapiens, we found no ancestral Y chromosome lineages in a set of 1,209 samples. The finding excludes the possibility that early hominids contributed significantly to the paternal heritage of the region.
PDF file
Genetic Evidence for the Proto-Austronesian Homeland in Asia: mtDNA and Nuclear DNA Variation in Taiwanese Aboriginal Tribes
Previous studies of mtDNA variation in indigenous Taiwanese populations have suggested that they held an ancestral position in the spread of mtDNAs throughout Southeast Asia and Oceania (Melton et al. 1995; Sykes et al. 1995), but the question of an absolute proto-Austronesian homeland remains. To search for Asian roots for indigenous Taiwanese populations, 28 mtDNAs representative of variation in four tribal groups (Ami, Atayal, Bunun, and Paiwan) were sequenced and were compared with each other and with mtDNAs from 25 other populations from Asia and Oceania. In addition, eight polymorphic Alu insertion loci were analyzed, to determine if the pattern of mtDNA variation is concordant with nuclear DNA variation. Tribal groups shared considerable mtDNA sequence identity (P>.90), where gene flow is believed to have been low, arguing for a common source or sources for the tribes. mtDNAs with a 9-bp deletion have considerable mainland-Asian diversity and have spread to Southeast Asia and Oceania through a Taiwanese bottleneck. Only four Taiwanese mtDNA haplotypes without the 9-bp deletion were shared with any other populations, but these shared types were widely dispersed geographically throughout mainland Asia. Phylogenetic and principal-component analyses of Alu loci were concordant with conclusions from the mtDNA analyses; overall, the results suggest that the Taiwanese have temporally deep roots, probably in central or south China, and have been isolated from other Asian populations in recent history.
PDF file
Y Chromosomal Evidence for the Origins of Oceanic-Speaking Peoples
A number of alternative hypotheses seek to explain the origins of the three groups of Pacific populations—Melanesians, Micronesians, and Polynesians—who speak languages belonging to the Oceanic subfamily of Austronesian languages. To test these various hypotheses at the genetic level, we assayed diversity within the nonrecombining portion of the Y chromosome, which contains within it a relatively simple record of the human past and represents the most informative haplotypic system in the human genome. High-resolution haplotypes combining binary, microsatellite, and minisatellite markers were generated for 390 Y chromosomes from 17 Austronesian-speaking populations in southeast Asia and the Pacific. Nineteen paternal lineages were defined and a Bayesian analysis of coalescent simulations was performed upon the microsatellite diversity within lineages to provide a temporal aspect to their geographical distribution. The ages and distributions of these lineages provide little support for the dominant archeo-linguistic model of the origins of Oceanic populations that suggests that these peoples represent the Eastern fringe of an agriculturally driven expansion initiated in southeast China and Taiwan. Rather, most Micronesian and Polynesian Y chromosomes appear to originate from different source populations within Melanesia and Eastern Indonesia. The Polynesian outlier, Kapingamarangi, is demonstrated to be an admixed Micronesian/Polynesian population. Furthermore, it is demonstrated that a geographical rather than linguistic classification of Oceanic populations best accounts for their extant Y chromosomal diversity.
PDF file
Fast trains, slow boats, and the ancestry of the Polynesian islanders
PDF file