Using mitochondrial and nuclear DNA markers to reconstruct human evolution
Molecular genetic data have greatly improved our ability to test hypotheses about human evolution. During the past decade, a large amount of nuclear and mitochondrial data have been collected from diverse human populations. Taken together, these data indicate that modern humans are a relatively young species. African populations show the largest amount of genetic diversity, and they are the most genetically divergent population. Modern human populations expanded in size first on the African continent. These findings support a recent African origin of modern humans, but this conclusion should be tempered by the possible effects of factors such as gene flow, population size differences, and natural selection.
PDF file
Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs
We analyzed the complete mitochondrial DNA (mtDNA) sequences of three humans (African, European, and Japanese), three African apes (common and pygmy chimpanzees, and gorilla), and one orangutan in an attempt to estimate most accurately the substitution rates and divergence times of hominoid mtDNAs. Nonsynonymous substitutions and substitutions in RNA genes have accumulated with an approximately clock-like regularity. From these substitutions and under the assumption that the orangutan and African apes diverged 13 million years ago, we obtained a divergence time for humans and chimpanzees of 4.9 million years. This divergence time permitted calibration of the synonymous substitution rate (3.89 x 10(-8)/site per year). To obtain the substitution rate in the displacement (D)-loop region, we compared the three human mtDNAs and measured the relative abundance of substitutions in the D-loop region and at synonymous sites. The estimated substitution rate in the D-loop region was 7.00 x 10(-8)/site per year. Using both synonymous and D-loop substitutions, we inferred the age of the last common ancestor of the human mtDNAs as 143,000 +/- 18,000 years. The shallow ancestry of human mtDNAs, together with the observation that the African sequence is the most diverged among humans, strongly supports the recent African origin of modern humans, Homo sapiens sapiens.
PDF file
Ice Ages and the mitochondrial DNA chronology of human dispersals: a review
Modern DNA, in particular maternally inherited mitochondrial DNA (mtDNA), is now routinely used to trace ancient human migration routes and to obtain absolute dates for genetic prehistory. The errors on absolute genetic dates are often large (50% or more) and depend partly on the inherent evolutionary signal in the DNA data, and partly on our imperfect knowledge of the DNA mutation rate. Despite their imprecision, the genetic dates do provide an independent, consistent and global chronology linking living humans with their ancestors. Combining this chronology with archaeological and climatological data, most of our own mtDNA studies during the past decade strongly imply a major role for palaeoclimate in determining conditions for prehistoric migrations and demographic expansions. This paper summarizes our interpretation of the genetic findings, covering the initial and modest spread of humans within Africa more than 100 ka, the striking re-expansion within Africa 60–80 ka, leading ultimately to the out-of-Africa migration of a single, small group which settled in Australia, Eurasia and America during windows of opportunity at least partly dictated by fluctuations in sea-levels and climatic conditions.
PDF file
Understanding Human DNA Sequence Variation
Over the past century researchers have identified normal genetic variation and studied that variation in diverse human populations to determine the amounts and distributions of that variation. That information is being used to develop an understanding of the demographic histories of the different populations and the species as a whole, among other studies. With the advent of DNA-based markers in the last quarter century, these studies have accelerated. One of the challenges for the next century is to understand that variation. One component of that understanding will be population genetics. We present here examples of many of the ways these new data can be analyzed from a population perspective using results from our laboratory on multiple individual DNA-based polymorphisms, many clustered in haplotypes, studied in multiple populations representing all major geographic regions of the world. These data support an ‘‘out of Africa’’ hypothesis for human dispersal around the world and begin to refine the understanding of population structures and genetic relationships. We are also developing baseline information against which we can compare findings at different loci to aid in the identification of loci subject, now and in the past, to selection (directional or balancing). We do not yet have a comprehensive understanding of the extensive variation in the human genome, but some of that understanding is coming from population genetics.
PDF file
Has the Combination of Genetic and Fossil Evidence Solved the Riddle of Modern Human Origins?
Debate over the origin of modern humans continues without a clear end in sight. Currently, the genetic and fossil evidence is still used to support two different interpretations of the origin of modern humans. Some researchers claim that the genetic evidence is compatible with either an Out-of-Africa or a Multiregional model, while other scientists argue that the evidence supports only a Multiregional model of evolution. I argue that the fossil record and archeological evidence constrain interpretation of the genetic evidence and imply that very little, if any, admixture with Eurasian archaic hominins such as the Neanderthals occurred during the spread of modern humans out of Africa.
PDF file
Molecular genetic data have greatly improved our ability to test hypotheses about human evolution. During the past decade, a large amount of nuclear and mitochondrial data have been collected from diverse human populations. Taken together, these data indicate that modern humans are a relatively young species. African populations show the largest amount of genetic diversity, and they are the most genetically divergent population. Modern human populations expanded in size first on the African continent. These findings support a recent African origin of modern humans, but this conclusion should be tempered by the possible effects of factors such as gene flow, population size differences, and natural selection.
PDF file
Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs
We analyzed the complete mitochondrial DNA (mtDNA) sequences of three humans (African, European, and Japanese), three African apes (common and pygmy chimpanzees, and gorilla), and one orangutan in an attempt to estimate most accurately the substitution rates and divergence times of hominoid mtDNAs. Nonsynonymous substitutions and substitutions in RNA genes have accumulated with an approximately clock-like regularity. From these substitutions and under the assumption that the orangutan and African apes diverged 13 million years ago, we obtained a divergence time for humans and chimpanzees of 4.9 million years. This divergence time permitted calibration of the synonymous substitution rate (3.89 x 10(-8)/site per year). To obtain the substitution rate in the displacement (D)-loop region, we compared the three human mtDNAs and measured the relative abundance of substitutions in the D-loop region and at synonymous sites. The estimated substitution rate in the D-loop region was 7.00 x 10(-8)/site per year. Using both synonymous and D-loop substitutions, we inferred the age of the last common ancestor of the human mtDNAs as 143,000 +/- 18,000 years. The shallow ancestry of human mtDNAs, together with the observation that the African sequence is the most diverged among humans, strongly supports the recent African origin of modern humans, Homo sapiens sapiens.
PDF file
Ice Ages and the mitochondrial DNA chronology of human dispersals: a review
Modern DNA, in particular maternally inherited mitochondrial DNA (mtDNA), is now routinely used to trace ancient human migration routes and to obtain absolute dates for genetic prehistory. The errors on absolute genetic dates are often large (50% or more) and depend partly on the inherent evolutionary signal in the DNA data, and partly on our imperfect knowledge of the DNA mutation rate. Despite their imprecision, the genetic dates do provide an independent, consistent and global chronology linking living humans with their ancestors. Combining this chronology with archaeological and climatological data, most of our own mtDNA studies during the past decade strongly imply a major role for palaeoclimate in determining conditions for prehistoric migrations and demographic expansions. This paper summarizes our interpretation of the genetic findings, covering the initial and modest spread of humans within Africa more than 100 ka, the striking re-expansion within Africa 60–80 ka, leading ultimately to the out-of-Africa migration of a single, small group which settled in Australia, Eurasia and America during windows of opportunity at least partly dictated by fluctuations in sea-levels and climatic conditions.
PDF file
Understanding Human DNA Sequence Variation
Over the past century researchers have identified normal genetic variation and studied that variation in diverse human populations to determine the amounts and distributions of that variation. That information is being used to develop an understanding of the demographic histories of the different populations and the species as a whole, among other studies. With the advent of DNA-based markers in the last quarter century, these studies have accelerated. One of the challenges for the next century is to understand that variation. One component of that understanding will be population genetics. We present here examples of many of the ways these new data can be analyzed from a population perspective using results from our laboratory on multiple individual DNA-based polymorphisms, many clustered in haplotypes, studied in multiple populations representing all major geographic regions of the world. These data support an ‘‘out of Africa’’ hypothesis for human dispersal around the world and begin to refine the understanding of population structures and genetic relationships. We are also developing baseline information against which we can compare findings at different loci to aid in the identification of loci subject, now and in the past, to selection (directional or balancing). We do not yet have a comprehensive understanding of the extensive variation in the human genome, but some of that understanding is coming from population genetics.
PDF file
Has the Combination of Genetic and Fossil Evidence Solved the Riddle of Modern Human Origins?
Debate over the origin of modern humans continues without a clear end in sight. Currently, the genetic and fossil evidence is still used to support two different interpretations of the origin of modern humans. Some researchers claim that the genetic evidence is compatible with either an Out-of-Africa or a Multiregional model, while other scientists argue that the evidence supports only a Multiregional model of evolution. I argue that the fossil record and archeological evidence constrain interpretation of the genetic evidence and imply that very little, if any, admixture with Eurasian archaic hominins such as the Neanderthals occurred during the spread of modern humans out of Africa.
PDF file