Genetic Chaos

Friday, June 22, 2007

Human X-chromosomal lineages in Europe reveal Middle Eastern and Asiatic contacts

Within Europe, classical genetic markers, nuclear autosomal and Y-chromosome DNA polymorphisms display an east-west frequency gradient. This has been taken as evidence for the westward migration of Neolithic farmers from the Middle East. In contrast, most studies of mtDNA variation in Europe and the Middle East have not revealed clinal distributions. Here we report an analysis of dys44 haplotypes, consisting of 35 polymorphisms on an 8 kb segment of the dystrophin gene on Xp21, in a sample of 1203 Eurasian chromosomes. Our results do not show a significant genetic structure in Europe, though when Middle Eastern samples are included a very low but significant genetic structure, rooted in Middle Eastern heterogeneity, is observed. This structure was not correlated to either geography or language, indicating that neither of these factors are a barrier to gene flow within Europe and/or the Middle East. Spatial autocorrelation analysis did not show clinal variation from the Middle East to Europe, though an underlying and ancient east-west cline across the Eurasian continent was detected. Clines provide a strong signal of ancient major population migration(s), and we suggest that the observed cline likely resulted from an ancient, bifurcating migration out of Africa that influenced the colonizing of Europe, Asia and the Americas. Our study reveals that, in addition to settlements from the Near East, Europe has been influenced by other major population movements, such as expansion(s) from Asia, as well as by recent gene flow from within Europe and the Middle East.

PDF file

Tuesday, June 19, 2007

Differential Susceptibility to Hypertension Is Due to Selection during the Out-of-Africa Expansion

Hypertension is a leading cause of stroke, heart disease, and kidney failure. The genetic basis of blood pressure variation is largely unknown but is likely to involve genes that influence renal salt handling and arterial vessel tone. Here we argue that susceptibility to hypertension is ancestral and that differential susceptibility to hypertension is due to differential exposure to selection pressures during the out-of-Africa expansion. The most important selection pressure was climate, which produced a latitudinal cline in heat adaptation and, therefore, hypertension susceptibility. Consistent with this hypothesis, we show that ecological variables, such as latitude, temperature, and rainfall, explain worldwide variation in heat adaptation as defined by seven functional alleles in five genes involved in blood pressure regulation. The latitudinal cline in heat adaptation is consistent worldwide and is largely unmatched by latitudinal clines in short tandem repeat markers, control single nucleotide polymorphisms, or non-functional single nucleotide polymorphisms within the five genes. In addition, we show that latitude and one of these alleles, GNB3 (G protein β3 subunit) 825T, account for a major portion of worldwide variation in blood pressure. These results suggest that the current epidemic of hypertension is due to exposures of the modern period interacting with ancestral susceptibility. Modern populations differ in susceptibility to these new exposures, however, such that those from hot environments are more susceptible to hypertension than populations from cold environments. This differential susceptibility is likely due to our history of adaptation to climate.

PDF file

Monday, June 18, 2007

Genetics of population isolates

Genetic isolates, as shown empirically by the Finnish, Old Order Amish, Hutterites, Sardinian and Jewish communities among others, represent a most important and powerful tool in genetically mapping inherited disorders. The main features associated with that genetic power are the existence of multigenerational pedigrees which are mostly descended from a small number of founders a short number of generations ago, environmental and phenotypic homogeneity, restricted geographical distribution, the presence of exhaustive and detailed records correlating individuals in very well ascertained pedigrees, and inbreeding as a norm. On the other hand, the presence of a multifounder effect or admixture among divergent populations in the founder time (e.g. the Finnish and the Paisa community from Colombia) will theoretically result in increased linkage disequilibrium among adjacent loci. The present review evaluates the historical context and features of some genetic isolates with emphasis on the basic population genetic concepts of inbreeding and genetic drift, and also the state-of-the-art in mapping traits, both Mendelian and complex, on genetic isolates.

PDF file

Y Chromosome Binary Markers to Study the High Prevalence of Males in Sardinian Centenarians and the Genetic Structure of the Sardinian Population

We have analyzed a sample of 40 centenarians and 116 young controls from Sardinia, with a set of new Y chromosome binary markers, to evaluate if Y chromosome genes are involved in the high prevalence of males among centenarian Sardinians (1/2 vs. 1/4 in other populations studied). The results indicate that none of the seven lineages that account for 197% of the Y chromosome diversity in Sardinia provide an advantage with respect to the extreme longevity. However, our results, although based on the male-specific Y chromosome polymorphisms, give a clear profile of the pattern of genetic variability in Sardinia. Indeed they indicate that the Sardinian population had two main founder populations that have evolved in isolation for at least the last 5,000 years. These findings set the stage for future studies on longevity and other complex traits in Sardinia.

PDF file

Tuesday, June 05, 2007

Localizing Recent Adaptive Evolution in the Human Genome

Identifying genomic locations that have experienced selective sweeps is an important first step toward understanding the molecular basis of adaptive evolution. Using statistical methods that account for the confounding effects of population demography, recombination rate variation, and single-nucleotide polymorphism ascertainment, while also providing fine-scale estimates of the position of the selected site, we analyzed a genomic dataset of 1.2 million human single-nucleotide polymorphisms genotyped in African-American, European-American, and Chinese samples. We identify 101 regions of the human genome with very strong evidence (p < 10-5) of a recent selective sweep and where our estimate of the position of the selective sweep falls within 100 kb of a known gene. Within these regions, genes of biological interest include genes in pigmentation pathways, components of the dystrophin protein complex, clusters of olfactory receptors, genes involved in nervous system development and function, immune system genes, and heat shock genes. We also observe consistent evidence of selective sweeps in centromeric regions. In general, we find that recent adaptation is strikingly pervasive in the human genome, with as much as 10% of the genome affected by linkage to a selective sweep.

PDF file