Genetic Chaos

Friday, November 03, 2006

Y-Chromosomal Variation in the Czech Republic

To analyze the contribution of the Czech population to the Y-chromosome diversity landscape of Europe and to reconstruct past demographic events, we typed 257 males from five locations for 21 UEPs. Moreover, 141 carriers of the three most common haplogroups were typed for 10 microsatellites and coalescent analyses applied. Sixteen Hg's characterized by derived alleles were identified, the most common being R1a-SRY10831 and P-DYS257*(xR1a). The pool of haplogroups within I-M170 represented the third most common clade. Overall, the degree of population structure was low. The ages for Hg I-M170, P-DYS257*(xR1a), and R1a-SRY10831 ap peared to be comparable and compatible with their presence during or soon after the LGM. A signal of population growth beginning in the first millennium B.C. was detected. Its similarity among the three most common Hg's indicated that growth was characteristic for a gene pool that already contained all of them. The Czech population appears to be influenced, to a very moderate extent, by genetic inputs from outside Europe in the post-Neolithic and historical times. Population growth postdated the archaeologically documented introduction of Neolithic technology and the estimated central value coincides with a period of repeated changes driven by the development of metal technologies and the associated social and trade organization.

PDF file

Significant genetic differentiation between Poland and Germany follows present-day political borders, as revealed by Y-chromosome analysis

To test for human population substructure and to investigate human population history we have analysed Y-chromosome diversity using seven microsatellites (Y-STRs) and ten binary markers (Y-SNPs) in samples from eight regionally distributed populations from Poland (n = 913) and 11 from Germany (n = 1,215). Based on data from both Y-chromosome marker systems, which we found to be highly correlated (r = 0.96), and using spatial analysis of the molecular variance (SAMOVA), we revealed statistically significant support for two groups of populations: (1) all Polish populations and (2) all German populations. By means of analysis of the molecular variance (AMOVA) we observed a large and statistically significant proportion of 14% (for Y-SNPs) and 15% (for Y-STRs) of the respective total genetic variation being explained between both countries. The same population differentiation was detected using Monmonier's algorithm, with a resulting genetic border between Poland and Germany that closely resembles the course of the political border between both countries. The observed genetic differentiation was mainly, but not exclusively, due to the frequency distribution of two Y-SNP haplogroups and their associated Y-STR haplotypes: R1a1*, most frequent in Poland, and R1*(xR1a1), most frequent in Germany. We suggest here that the pronounced population differentiation between the two geographically neighbouring countries, Poland and Germany, is the consequence of very recent events in human population history, namely the forced human resettlement of many millions of Germans and Poles during and, especially, shortly after World War II. In addition, our findings have consequences for the forensic application of Y-chromosome markers, strongly supporting the implementation of population substructure into forensic Y chromosome databases, and also for genetic association studies.

PDF file